Yeast PIG Genes: PIG1 Encodes a Putative Type 1 Phosphatase Subunit that Interacts with the Yeast Glycogen Synthase Gsy2p

Authors


Abstract

The biosynthesis of glycogen involves multiple proteins that associate with each other and the glycogen macromolecule. In efforts to understand the nature of these proteins, a two-hybrid screen was undertaken to detect proteins able to interact with Gsy2p, a major form of glycogen synthase in Saccharomyces cerevisiae. Two positives expressed proteins derived from genes designated PIG1 and PIG2, on chromosomes XIIR and IXL respectively. PIG1 codes for a protein with 38% identity over a 230 residue segment to Gac1p, a protein thought to be a type 1 protein phosphatase targeting subunit whose loss impairs glycogen synthesis. Pig2p has 30% identity to the protein corresponding to an open reading frame, YER054, on chromosome V. Deletion of PIG1 on its own had little effect on glycogen storage but, in combination with loss of GAC1, caused a more severe glycogen-deficient phenotype than seen in gac1 mutants. This result is consistent with Pig1p being functionally related to Gac1p and we propose that Pig1p may be a type 1 phosphatase regulatory subunit. Delection of PIG2, YER054, or both genes together caused no detectable change in glycogen metabolism under the conditions tested. Gac1p, Pig1p, Pig2p and the YER054p are the only four proteins coded by the yeast genome that share a conserved segment of ∼25 residues, designated the GVNK motif, that is identifiable also in RGI, the mammalian type 1 phosphatase targeting subunit. © 1997 by John Wiley & Sons, Ltd.

Ancillary