SEARCH

SEARCH BY CITATION

REFERENCES

  • Andreasen AA, Stier TJB. 1953. Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for the growth in a defined medium. J Cell Comp Physiol 41: 2336.
  • André L, Hemming A, Adler L. 1991. Osmoregulation in Saccharomyces cerevisiae. Studies on the osmotic induction of glycerol production and glycerol 3-phosphate dehydrogenase (NAD+). FEBS Lett 286: 1317.
  • Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L. 1997. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaption and redox regulation. EMBO J 16: 21792187.
  • Björkqvist S, Ansell R, Adler L, Lidén G. 1997. Physiological response to anaerobicity of glycerol 3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Appl Env Microbiol 63: 128132.
  • Bruinenberg PM, van Dijken JP, Scheffers WA. 1983. An enzymatic analysis of NADPH production and consumption in Candida utilis. J Gen Microbiol 129: 965971.
  • Christensen LH, Schulze U, Nielsen J, Villadsen J. 1995. Acoustic off-gas analyser for bioreactors: precision, accuracy and dynamics of detection. Chem Eng Sci 50: 26012610.
  • Ciriacy M. 1979. Isolation and characterisation of further cis- and trans-acting regulatory elements in the synthesis of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae. Mol Gen Genet 176: 427431.
  • Eriksson P, André L, Ansell R, Blomberg A, Adler L. 1995. Cloning and characterisation of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol Microbiol 17: 95107.
  • Larsson K, Ansell R, Eriksson P, Adler L. 1993. A gene encoding sn-glycerol-3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol Microbiol 10: 11011111.
  • Meaden PG, Dickinson FM, Mifsud A, Tessier W, Westwater J, Bussey H, Midgley M. 1997. The ALD6 gene of Saccharomyces encodes a cytosolic, Mg2+-activated acetaldehyde dehydrogenase. Yeast 13: 13191327.
  • Nissen TL, Schulze U, Nielsen J, Villadsen J. 1997. Flux distributions in anaerobic, glucose-limited continuous cultivations of Saccharomyces cerevisiae. Microbiology 143: 203218.
  • Nissen TL, Anderlund M, Kielland-Brandt MC, Nielsen J, Villadsen J. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to a reduction in the intracellular concentration of NADPH (submitted for publication).
  • Oura E. 1977. Reaction products of yeast fermentations. Process Biochem 12: 1921, 35.
  • Pavlik P, Simon M, Schuster T, Ruis H. 1993. The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: cloning and characterisation. Curr Genet 24: 2125.
  • Rønnow B, Kielland-Brandt MC. 1993. GUT2, a gene for mitochondrial glycerol 3-phosphate dehydrogenase of Saccharomyces cerevisiae. Yeast 9: 11211130.
  • Schulze U. 1995. Anaerobic physiology of Saccharomyces cerevisiae. PhD Thesis, Department of Biotechnology, Technical University of Denmark.
  • van Dijken JP, Scheffers WA. 1986. Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32: 199224.
  • Verduyn C, Postma E, Scheffers WA, van Dijken JP. 1990. Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136: 395403.
  • Voordouw G, Veeger C, Van Breemen JF, Van Bruggen EF. 1979. Structure of pyridine nucleotide transhydrogenase from Azotobacter vinelandii. Eur J Biochem 98: 447454.
  • Wach A, Brachat A, Pöhlmann R, Philippsen P. 1994. New heterologous modules for classical or PCR-based gene disruption in Saccharomyces cerevisiae. Yeast 10: 17931808.
  • Wang X, Mann CJ, Bai Y, Ni L, Weiner H. 1998. Molecular cloning, characterization and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae. J Bacteriol 180: 822830.