Minus end-directed kinesin-like motor protein, kcbp, localizes to anaphase spindle poles in Haemanthus endosperm

Authors


Abstract

Microtubule-based motor proteins assemble and reorganize acentrosomal mitotic and meiotic spindles in animal cells. The functions of motor proteins in acentrosomal plant spindles are unknown. The cellulosic cell wall and relative small size of most plant cells precludes accurate detection of the spatial distribution of motors in mitosis. Large cell size and absence of a cellulosic cell wall in Haemanthus endosperm make these cells ideally suited for studies of the spatial distribution of motor proteins during cell division. Immunolocalization of a kinesin-like calmodulin-binding protein (KCBP) in Haemanthus endosperm revealed its mitotic distribution. KCBP appears first in association with the prophase spindle. Highly concentrated within the cores of individual kinetochore fibers, KCBP decorates microtubules of kinetochore-fibers through metaphase. By mid-anaphase (when a barrel-shaped spindle becomes convergent), the protein redistributes and accumulates at the spindle polar regions. In telophase, KCBP relocates toward the phragmoplast and cell plate. These data suggest a role for KCBP in anaphase spindle microtubule convergence, which assures coherence of kinetochore-fibers within each sister chromosome group. Increasing coherence of kinetochore-fibers prevents splitting within each sister chromosome group and formation of multinucleated cells. Cell Motil. Cytoskeleton 41:271–280, 1998. © 1998 Wiley-Liss, Inc.

Ancillary