• Panax ginseng;
  • neuroprotective activity;
  • oxidative stress;
  • nitric oxide;
  • malondialdehyde;
  • calcium influx;
  • superoxide dismutase


Certain natural products and Asian herbal remedies have been used in Asia to attenuate neurodegenerative diseases, including senile dementia. We have examined derivatives of several natural products for potential neuroprotective activity in an in vitro test system. In the present study, we assayed a number of compounds that were isolated from Panax ginseng C.A. Meyer (Araliaceae) for an ability to protect rat cortical cell cultures from the deleterious effects of the neurotoxicant, glutamate. We found that ginsenosides Rb1 and Rg3 significantly attenuated glutamate-induced neurotoxicity. Brief exposure of cultures to excess glutamate caused extensive neuronal death. Glutamate-induced neuronal cell damage was reduced significantly by pretreatment with Rb1 and Rg3. Ginsenosides Rb1 and Rg3 inhibited the overproduction of nitric oxide, which routinely follows glutamate neurotoxicity, and preserved the level of superoxide dismutase in glutamate-treated cells. Furthermore, in cultures treated with glutamate, these ginsenosides inhibited the formation of malondialdehyde, a compound that is produced during lipid peroxidation, and diminished the influx of calcium. These results show that ginsenosides Rb1 and Rg3 exerted significant neuroprotective effects on cultured cortical cells. Therefore, these compounds may be efficacious in protecting neurons from oxidative damage that is produced by exposure to excess glutamate. J. Neurosci. Res. 53:426–432, 1998. © 1998 Wiley-Liss, Inc.