Imaging of P glycoprotein Function in vivo with PET

  1. Gregory Bock and
  2. Jamie A. Goode
  1. N. H. Hendrikse and
  2. W. Vaalburg

Published Online: 7 OCT 2008

DOI: 10.1002/0470846356.ch10

Mechanisms of Drug Resistance in Epilepsy: Novartis Foundation Symposium 243

Mechanisms of Drug Resistance in Epilepsy: Novartis Foundation Symposium 243

How to Cite

Hendrikse, N. H. and Vaalburg, W. (2002) Imaging of P glycoprotein Function in vivo with PET, in Mechanisms of Drug Resistance in Epilepsy: Novartis Foundation Symposium 243 (eds G. Bock and J. A. Goode), John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/0470846356.ch10

Author Information

  1. PET Center, University Hospital of Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands

Publication History

  1. Published Online: 7 OCT 2008
  2. Published Print: 25 MAR 2002

Book Series:

  1. Novartis Foundation Symposia

Book Series Editors:

  1. Novartis Foundation

ISBN Information

Print ISBN: 9780470841464

Online ISBN: 9780470846353

SEARCH

Summary

P glycoprotein (Pgp) is expressed on cell membranes of various organs in the body, such as the capillary endothelial cells of the brain. Furthermore, Pgp can also be expressed on the cell membrane of tumour cells. Because of Pgp-mediated efflux, tissue levels of several Pgp substrates are lower than in Pgp-negative tissues. Drug levels in Pgp-expressing organs may be increased by modulation of this Pgp-facilitated transport with several compounds, such as cyclosporin A. Up to now, the presence of drug efflux pumps in tissues could only be examined at the mRNA and protein level. However, this gives no insight into the important question of the functionality of these drug efflux pumps. Information about the transport function of Pgp and the effect of modulating this function may improve the therapeutic treatment of these patients. Positron emission tomography (PET) gives us a unique opportunity to study non-invasively (patho)physiological dynamic processes in vivo. We have therefore developed and validated a method for studying Pgp-mediated transport and its modulation in vivo with PET.