Chapter 12. Structural Energy Flow Techniques

  1. Daniel J. Inman2,
  2. Charles R. Farrar3,
  3. Vicente Lopes Junior4,5 and
  4. Valder Steffen Junior6
  1. José Roberto de F.Arruda

Published Online: 13 SEP 2005

DOI: 10.1002/0470869097.ch12

Damage Prognosis: For Aerospace, Civil and Mechanical Systems

Damage Prognosis: For Aerospace, Civil and Mechanical Systems

How to Cite

de F.Arruda, J. R. (2005) Structural Energy Flow Techniques, in Damage Prognosis: For Aerospace, Civil and Mechanical Systems (eds D. J. Inman, C. R. Farrar, V. Lopes and V. Steffen), John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/0470869097.ch12

Editor Information

  1. 2

    Center for Intelligent Material Systems and Structures, 310 Durham Hall, Mail Code 0261, Virginia Polytechnic Institute, Blacksburg, VA 24061, USA

  2. 3

    Los Alamos National Laboratory, Engineering Sciences and Applications, ESA-WR, Mail Stop T001, Los Alamos, New Mexico 87545, USA

  3. 4

    Av. Brasil, 56, 15.385-000 Ilha Solteira, SP, Brazil

  4. 5

    Universidade Estadual de São Paulo, SP, Brazil

  5. 6

    Federal University of Uberlândia, School of Mechanical Engineering, Campus Santa Monica, Uberlândia, Minas Gerais, 38400-902, Brazil

Author Information

  1. Departamento de Mecǎnica Computacional, Faculdade de Engenharia Mecǎnica, Universidade Estadual de Campinas, Caixa Postal 6122, 13083-970 Campinas, SP, Brazil

Publication History

  1. Published Online: 13 SEP 2005
  2. Published Print: 18 MAR 2005

ISBN Information

Print ISBN: 9780470869079

Online ISBN: 9780470869093



  • structural energy flow;
  • fault detection methods;
  • laser Doppler vibrometry and pulse holography;
  • local energy dissipation;
  • structural intensity;
  • power flow techniques;
  • regressive discrete Fourier series (RDFS);
  • active intensity maps;
  • spatial filtering;
  • meshless methods


This chapter contains sections titled:

  • Introduction

  • Power and Intensity Concepts

  • Experimental Power Flow Techniques

  • Spatial Filtering for Fault Detection

  • Acoustical Measurements as a Tool for Fault Detection

  • Detecting Nonlinearity with Special Excitation Signals

  • Frequency Limits of Numerical Modeling Techniques – The Midfrequency Problem

  • References