9. Partial Differential Equations

  1. Won Young Yang1,
  2. Wenwu Cao2,
  3. Tae-Sang Chung1 and
  4. John Morris3

Published Online: 27 JAN 2005

DOI: 10.1002/0471705195.ch9

Applied Numerical Methods Using MATLAB®

Applied Numerical Methods Using MATLAB®

How to Cite

Yang, W. Y., Cao, W., Chung, T.-S. and Morris, J. (2005) Partial Differential Equations, in Applied Numerical Methods Using MATLAB®, John Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 10.1002/0471705195.ch9

Author Information

  1. 1

    Chung-Ang University, Korea

  2. 2

    Pennsylvania State University, USA

  3. 3

    The University of Auckland, New Zealand

Publication History

  1. Published Online: 27 JAN 2005
  2. Published Print: 14 JAN 2005

ISBN Information

Print ISBN: 9780471698333

Online ISBN: 9780471705192



  • partial differential equation (PDE);
  • elliptic PDE;
  • parabolic PDE;
  • hyperbolic PDE;
  • explicit forward Euler method;
  • implicit backward Euler method;
  • Crank-Nicholson method;
  • explicit central difference method;
  • finite element method (FEM);
  • graphic user interface (GUI);
  • PDEtool


It introduces various methods including FEM (finite element method) to solve PDEs (partial differential equations), i.e. a class of differential equations involving more than one independent variable with some boundary conditions. It also introduces the usage of PDEtool which is the MATLAB built-in GUI (graphic user interface) for solving PDEs.