SEARCH

SEARCH BY CITATION

Keywords:

  • paleodiet;
  • microwear;
  • phytoliths;
  • abrasion

Abstract

In order to further evaluate the process of microwear formation on human dental enamel, microwear was experimentally produced by a chewing simulation with an Academic Center for Dentistry Amsterdam (ACTA) device. For this simulation, several cereal species were processed according to historical milling techniques, the experimental results of which were compared with those obtained from cereals processed after modern techniques, and also with natural microwear on early medieval human molars. Comparison of simulated microwear pits with natural microwear pits showed that the simulation led to traces which matched those found on the historical teeth in terms of both size and shape. Experimentally produced microwear pits were especially characteristic for the cereal species used in the simulations, and both pit morphology and enamel loss were a function of cereal phytolith content. Despite the high variability of phytolith size and shape, certain types are characteristic for certain cereals, which in turn are capable of producing cereal-specific microwear. This experimental approach is likely to further define ancient human dietary behavior, including food processing. Am J Phys Anthropol 114:124–138, 2001. © 2001 Wiley-Liss, Inc.