A curricular frame for physics education: Development, comparison with students' interests, and impact on students' achievement and self-concept

Authors


Abstract

This article presents three interlinked studies aimed at: (1) developing a curricular frame for physics education; (2) assessing the students' interest in the contents, contexts, and activities that are suggested by that curricular frame; and (3) developing a curriculum that is in line with that frame and measuring its cognitive and emotional effects on students. The curricular frame was developed by adopting the Delphi technique and drawing on the expertise of 73 persons selected according to specified selection criteria. Interest data of some 8000 students and information of the presently taught physics curriculum were sampled longitudinally as well as cross-sectionally in various German Länder (states) by questionnaire. The third study comprised 23 experimental and 7 control classes. As a result of the comparison between the features of the curricular frame, the interest structure of students, and the current physics curriculum, there is a remarkable congruency between students' interest in physics and the kind of physics education identified in the Delphi study as being relevant. However, there is a considerable discrepancy between students' interest and the kind of physics instruction practiced in the physics classroom. Regression analysis revealed that students' interest in physics as a school subject is hardly related to their interest in physics, but mainly to the students' self-esteem of being good achievers. The data strongly suggest physics be taught so that students have a chance to develop a positive physics-related self-concept and to link physics with situations they encounter outside the classroom. A curriculum based on these principles proved superior compared to a traditional curriculum. © 2000 John Wiley & Sons, Inc. Sci Ed84:689–705, 2000.

Ancillary