Standard Article

Electrochemistry

  1. Hartmut Wendt1,
  2. Helmut Vogt2,
  3. Gerhard Kreysa3,
  4. Dieter M. Kolb4,
  5. Gerald E. Engelmann4,
  6. Jörg C. Ziegler4,
  7. Hubert Goldacker5,
  8. Klaus Jüttner3,
  9. Ulrich Galla6,
  10. Helmut Schmieder6,
  11. Eberhard Steckhan7

Published Online: 15 JUL 2009

DOI: 10.1002/14356007.a09_183.pub3

Ullmann's Encyclopedia of Industrial Chemistry

Ullmann's Encyclopedia of Industrial Chemistry

How to Cite

Wendt, H., Vogt, H., Kreysa, G., M. Kolb, D., E. Engelmann, G., Ziegler, J. C., Goldacker, H., Jüttner, K., Galla, U., Schmieder, H. and Steckhan, E. 2009. Electrochemistry. Ullmann's Encyclopedia of Industrial Chemistry. .

Author Information

  1. 1

    Technische Hochschule Darmstadt, Darmstadt, Germany

  2. 2

    Technische Fachhochschule Berlin, Berlin, Germany

  3. 3

    Dechema, Frankfurt/Main, Germany

  4. 4

    Universität Ulm, Abteilung für Elektrochemie, Ulm, Germany

  5. 5

    Forschungszentrum Karlsruhe, Karlsruhe, Germany

  6. 6

    Forschungszentrum Karlsruhe, ITC-CPV, Karlsruhe, Germany

  7. 7

    Universität Bonn, Kekulé-Institut für Organische Chemie, Bonn, Germany

Publication History

  1. Published Online: 15 JUL 2009

This is not the most recent version of the article. View current version (15 OCT 2011)

Abstract

The article contains sections titled:

1.Introduction
2.Basic Laws and Equations
2.1.Electrode Kinetics
2.2.Technical Electrocatalysis
2.2.1.Principles of Electrocatalysis
2.2.2.Technical Electrodes
2.2.2.1.Electrocatalytically Activated Dimensionally Stable Chlorine Evolving Electrodes
2.2.2.2.Oxygen Evolving Anodes
2.2.2.3.Electrocatalysis of Cathodic Hydrogen Evolution
2.2.2.4.Electrocatalysis of Cathodic Oxygen Reduction and Anodic Hydrogen Oxidation in Fuel Cells
2.3.Gas-Evolving Electrodes
2.4.Ionic Conduction in Electrolytes
2.5.Fluid Dynamics and Mass Transfer
3.Electrochemical Cells
3.1.Optimized Current Density
3.2.Primary, Secondary, and Tertiary Current Distributions
3.3.Electrochemical Nanostructuring with a Scanning Tunneling Microscope
4.Inorganic Electrochemical Processes
4.1.Chlor-Alkali Electrolysis
4.1.1.Molten Salt Electrolysis
4.1.2.Production of Chlorine
4.1.3.Electrosynthesis of Hypochlorite
4.1.4.Electrosynthesis of Chlorate
4.1.5.Electrosynthesis of Perchlorate
4.1.6.Chlorine Production Using Gas-Diffusion Electrodes
4.2.Water Electrolysis for Hydrogen Production
4.3.Anodic Generation of Peroxodisulfuric Acid and Peroxodisulfates
4.4.Electrowinning and Electrorefining of Metals
4.4.1.Aqueous Electrolytes
4.4.2.Melts
4.5.Electrochemical Processes in Nuclear Fuel Reprocessing
4.5.1.Electroredox Separation Processes
4.5.2.Electroreduction Processes
4.5.3.Electrooxidation
4.5.4.Corrosion
4.6.Electrochemical Water and Effluent Treatment
4.6.1.Cathodic Treatment
4.6.1.1.Optimization of Cell Design
4.6.1.2.Electrochemical Reactors and Their Applications
4.6.1.3.Operation Data of Electrochemical Cells
4.6.2.Electrodialysis
4.6.3.Anodic Treatment
4.6.3.1.Direct Oxidation at the Anode
4.6.3.2.Indirect Oxidation
4.7.Electrochemical Gas Purification
4.7.1.General Aspects
4.7.2.New Process Developments
4.8.Electrochemical Shaping
5.Organic Electrochemistry
5.1.Introduction
5.2.Perspectives of Electroorganic Reactions in Industry
5.3.Syntheses
5.3.1.Direct vs. Indirect or Mediated Electrochemical Reactions
5.3.2.Technically Important Processes Ordered by Reaction Classes
5.3.2.1.Electrochemical Substitution
5.3.2.2.Electrochemical Addition
5.3.2.3.Electrochemical Transformations of Functional Groups
5.3.2.4.Electrochemical Cleavage and Elimination
5.3.2.5.Electrochemical Coupling
5.3.2.6.Bioelectrosynthesis
5.3.3.Organic Electrochemistry for a Cleaner Environment
5.4.Experimental Factors and Techniques
5.4.1.Solvent - Electrolyte Systems
5.4.2.Electrodes
5.4.2.1.Cathodes
5.4.2.2.Anodes
5.4.2.3.Other Factors Influenced by the Electrode Material
5.4.3.Electrochemical Cells
5.4.3.1.General Considerations
5.4.3.2.Cell Design
5.5.Economic Aspects