Standard Article

Membranes and Membrane Separation Processes

  1. Heinrich Strathmann

Published Online: 30 APR 2005

DOI: 10.1002/14356007.a16_187.pub2

Ullmann's Encyclopedia of Industrial Chemistry

Ullmann's Encyclopedia of Industrial Chemistry

How to Cite

Strathmann, H. 2005. Membranes and Membrane Separation Processes. Ullmann's Encyclopedia of Industrial Chemistry. .

Author Information

  1. Institut für chemische Verfahrenstechnik, Universität Stuttgart, Federal Republic of Germany

Publication History

  1. Published Online: 30 APR 2005

This is not the most recent version of the article. View current version (15 OCT 2011)

Abstract

The article contains sections titled:

1.Introduction
1.1.Historical Development of Membranes and Membrane Processes
1.2.Advantages and Limitations of Membrane Processes
1.3.The Membrane-Based Industry
1.4.The Future of Membrane Science and Technology
2.Fundamentals
2.1.Definition of Terms
2.1.1.Definition of a Membrane and its Function
2.1.2.Definition of the Various Membrane Processes
2.1.3.The Membrane Transport Mechanism
2.2.Materials and Structures of Synthetic Membranes
2.2.1.Symmetric and Asymmetric Membranes
2.2.2.Porous Membranes
2.2.3.Homogeneous Membranes
2.2.4.Ion-Exchange Membranes
2.2.5.Liquid Membranes
2.2.6.Fixed-Carrier Membranes
2.3.Fluxes and Driving Forces in Membrane Separation Processes
2.4.Mathematical Description of Mass Transport in Membrane Processes
2.5.Membrane Separation Capability
2.6.Chemical and Electrochemical Equilibrium in Membrane Processes
2.6.1.Osmotic Equilibrium, Osmotic Pressure, Osmosis, and Reverse Osmosis
2.6.2.Donnan Equilibrium and Donnan Potential
3.Principles of Membrane Separation Processes
3.1.Principle of Microfiltration
3.2.Principle of Ultrafiltration
3.3.Principle of Reverse Osmosis
3.3.1.Mass Transport in Reverse Osmosis Described by Phenomenological Equations
3.3.2.Description of Mass Transport in Reverse Osmosis by the Solution-Diffusion Model
3.4.Principle of Gas Separation
3.4.1.Gas Separation by Knudsen Diffusion
3.4.2.Gas Transport by the Solution-Diffusion Mechanism in a Polymer Matrix
3.5.Principle of Pervaporation
3.6.Principle of Dialysis
3.6.1.Dialytic Mass Transport of Neutral Components
3.6.2.Dialytic Mass Transport of Electrolytes in a Membrane without Fixed Ions
3.6.3.Dialysis of Electrolytes in Ion-Exchange Membranes
3.7.Principle of Electrodialysis
3.7.1.Electrical Current and Ion Fluxes
3.7.2.Transport Number and Membrane Permselectivity
3.7.3.Membrane Counterion Permselectivity
3.7.4.Water Transport in Electrodialysis
3.8.Electrodialysis With Bipolar Membranes
3.9.Energy Requirements of Membrane Processes
3.9.1.Minimum Energy Required for Separation
3.9.2.Practical Energy Requirements of Membrane Processes
4.Membrane Separation Process Design and Operation
4.1.Ultrafiltration, Microfiltration, and Reverse Osmosis
4.1.1.Recovery Rate, Membrane Rejection, Retentate and Filtrate Concentrations
4.1.2.Solute Loss in Filtration
4.1.3.Effect of Osmotic Pressure on the Filtration Rate
4.1.4.Process Operating Mode
4.1.5.Diafiltration Operating Mode
4.2.Gas Separation
4.3.Pervaporation
4.4.Dialysis
4.5.Electrodialysis
4.5.1.Mass Transport in an Electrodialysis Stack
4.5.2.Energy Requirements in an Electrodialysis Desalination Process
4.5.3.Electrodialysis Process Costs
4.6.Bipolar Membrane Electrodialysis Process Design
4.6.1.Operating Modes in Bipolar Membrane Electrodialysis
4.6.2.Energy Requirements in Electrodialytic Water Dissociation
4.6.3.Total Energy Required for Production of an Acid and a Base
4.6.4.Total Process Costs
4.7.Continuous Electrodeionization Process Design
4.8.Other Membrane Processes
5.Membrane Preparation and Membrane Module Constructions
5.1.Membrane Preparation
5.1.1.Preparation of Porous Membranes
5.1.2.Preparation of Asymmetric Membranes
5.1.3.Rationalization of the Phase-Inversion Membrane Preparation Process
5.1.4.Preparation of Composite Membranes
5.1.5.Preparation of Inorganic Composite Membranes
5.1.6.Preparation of Homogeneous Solid Membranes
5.1.7.Preparation of Liquid Membranes
5.1.8.Preparation of Ion-Exchange Membranes
5.2.Membrane Characterization
5.2.1.Characterization of Porous Membranes
5.2.1.1.Membrane Separation Properties Determined by Filtration Tests
5.2.2.Characterization of Homogeneous Membranes
5.3.Membrane Modules
5.3.1.Cartridge Membrane Module
5.3.2.Plate-and-Frame Membrane Module
5.3.3.Spiral-Wound Module
5.3.4.Tubular Membrane Module
5.3.5.Capillary and Hollow-Fiber Membrane Modules
5.3.6.Other Membrane Modules
6.Concentration Polarization and Membrane Fouling
6.1.Concentration Polarization in Filtration Processes
6.1.1.Concentration Polarization without Solute Precipitation
6.1.2.Concentration Polarization with Solute Precipitation at the Membrane Surface
6.2.Membrane Fouling and its Causes
6.3.Concentration Polarization in Other Membrane Separation Processes
6.3.1.Concentration Polarization in Dialysis
6.3.2.Concentration Polarization in Electrodialysis
6.3.3.Concentration Polarization in Pervaporation
6.3.4.Concentration Polarization in Gas Separation