Standard Article

Nuclear Technology

  1. Eberhard Teuchert1,
  2. Joachim K. Axmann2,
  3. Peter-Jürgen Meyer3,
  4. Hans Hollinger4,
  5. Ivan Kausz3,
  6. Werner Debray3,
  7. Manfred Erve3,
  8. Rolf Riess3,
  9. Rudolf Nieder5,
  10. Klaus Kotthoff6,
  11. Dietrich Budnick3,
  12. Ulrich Dörfler3,
  13. Siegfried Dreyer retired5,
  14. Karl-Ludwig Schillings7,
  15. Viktor P. Luster3,
  16. Claus Essig8,
  17. Günter Koch9,
  18. Siegfried Träger10,
  19. Arthur Max10,
  20. Wolf-Dieter Krebs3,
  21. Wolfgang Stoll retired11,
  22. Werner Heit12,
  23. Ernst Warnecke13,
  24. Peter Brennecke13,
  25. Erich Merz14,
  26. Uwe Schumacher15,
  27. Hans Herold15

Published Online: 15 JAN 2007

DOI: 10.1002/14356007.a17_589.pub2

Ullmann's Encyclopedia of Industrial Chemistry

Ullmann's Encyclopedia of Industrial Chemistry

How to Cite

Teuchert, E., Axmann, J. K., Meyer, P.-J., Hollinger, H., Kausz, I., Debray, W., Erve, M., Riess, R., Nieder, R., Kotthoff, K., Budnick, D., Dörfler, U., Dreyer, S., Schillings, K.-L., Luster, V. P., Essig, C., Koch, G., Träger, S., Max, A., Krebs, W.-D., Stoll, W., Heit, W., Warnecke, E., Brennecke, P., Merz, E., Schumacher, U. and Herold, H. 2007. Nuclear Technology. Ullmann's Encyclopedia of Industrial Chemistry. .

Author Information

  1. 1

    Leverkusen, Federal Republic of Germany

  2. 2

    Technische Universität Braunschweig, Institut für Wissenschaftliches Rechnen, Braunschweig, Federal Republic of Germany

  3. 3

    formerly Siemens AG, Unternehmensbereich KWU, Erlangen, Federal Republic of Germany

  4. 4

    Siemens AG, Unternehmensbereich KWU, Offenbach, Federal Republic of Germany

  5. 5

    Interatom GmbH, Bergisch-Gladbach, Federal Republic of Germany

  6. 6

    Gesellschaft für Reaktorsicherheit, Köln, Federal Republic of Germany

  7. 7

    Bergisch-Gladbach, Federal Republic of Germany

  8. 8

    EDF Septen, Dept. Combustible, Villeurbanne Cedex, France

  9. 9

    Kernforschungszentrum Karlsruhe, Institut für Heisse Chemie, Karlsruhe, Federal Republic of Germany

  10. 10

    Nukem GmbH, Alzenau, Federal Republic of Germany

  11. 11

    (Siemens AG Brennelementwerk Hanau), Hanau, Federal Republic of Germany

  12. 12

    Nukem GmbH, Hanau, Federal Republic of Germany

  13. 13

    Bundesamt für Strahlenschutz, Salzgitter, Federal Republic of Germany

  14. 14

    Forschungszentrum Jülich, KFA, Jülich, Federal Republic of Germany

  15. 15

    Universität Stuttgart, Institut für Plasmaforschung, Stuttgart, Federal Republic of Germany

Publication History

  1. Published Online: 15 JAN 2007

This is not the most recent version of the article. View current version (15 OCT 2011)

Abstract

The article contains sections titled:

1.Fundamentals
1.1.Introduction
1.2.Design of a Nuclear Reactor
1.3.Physical Processes
1.3.1.Structure of Atomic Nuclei
1.3.2.Reactions with Neutrons
1.3.3.Decay
1.3.4.Cross-Sections
1.3.5.Moderation of Neutrons
1.3.6.Neutron Flux
1.3.7.Time Dependence of Neutron Flux
1.3.8.Reaction Rates
1.3.9.Burnup and Control
1.3.10.Fission Products and Actinides
2.Power Reactors, Survey
2.1.Introduction, Scope of Utilization
2.2.Important Technical and Economic Parameters
2.3.Radiation Protection and Safety
2.3.1.Radiological Quantities and Units
2.3.2.Radiation Burden, Radiation Damage, Radiation Safety Rules and Regulations
2.3.2.1.Natural and Medical Radiation Doses
2.3.2.2.Radiation Damage and Radiation Safety Regulations
2.3.3.Emission Protection
2.3.4.Industrial Safety
2.3.4.1.General Design Principles for Protection Systems
2.3.4.2.Safety Channels, Safety Limits, and Safety Measures
2.3.4.3.Engineered Safeguards
2.3.5.Accidents
2.3.5.1.Classification and Analysis
2.3.5.2.Design Accident
2.3.6.Location Problems
2.4.Survey of Reactor Types
2.4.1.Classification Features
2.4.1.1.Neutron Energy Spectrum
2.4.1.2.Fuels
2.4.1.3.Moderators
2.4.1.4.Coolants
2.4.2.Reactor Types
2.4.2.1.Light-Water Reactors (LWR)
2.4.2.2.Graphite-Moderated Reactors
2.4.2.3.Heavy-Water Reactors (D2O - R)
2.4.2.4.Fast Breeder Reactors
2.4.3.Future Developments
3.Thermal Reactors
3.1.Light-Water Reactors
3.1.1.Pressurized-Water Reactors
3.1.1.1.Design
3.1.1.2.Instrumentation and Control
3.1.1.3.Nuclear Power Plant Operation
3.1.1.4.Radioactive Releases to the Environment
3.1.1.5.European Pressurized-Water Reactor
3.1.1.5.1.Description of the Nuclear Systems
3.1.1.5.2.Instrumentation and Control Systems
3.1.1.5.3.Safety Concept
3.1.1.5.4.Plant Layout
3.1.1.5.5.Technical Data
3.1.2.Boiling-Water Reactors
3.1.2.1.Design
3.1.2.2.Instrumentation and Control
3.1.2.3.Operation of the Boiling-Water Reactor
3.1.2.4.Radioactive Releases to the Environment
3.1.2.5.SWR 1000
3.1.2.5.1.Nuclear Systems
3.1.2.5.2.Turbine Generator Plant System
3.1.2.5.3.Instrumentation and Control Systems
3.1.2.5.4.Electrical Systems
3.1.2.5.5.Safety Concept
3.1.2.5.6.Design
3.1.2.5.7.Technical Data
3.1.2.5.8.Project Status and Planned Schedule
3.1.3.Safety and Operating Systems and Process Equipment for Light-Water Reactors
3.1.3.1.Volume Control System
3.1.3.2.Chemicals Control System
3.1.3.3.Primary Coolant Purification and Degasification System
3.1.3.4.Primary Coolant Storage and Treatment System
3.1.3.5.Off-Gas Treatment System
3.1.3.6.Residual Heat Removal and Emergency Cooling System
3.1.3.7.Waste Treatment
3.1.3.8.Ventilation System
3.1.4.Materials for Light-Water Reactors
3.1.4.1.Materials for the Core Region
3.1.4.2.Materials for Components of the Nuclear Steam Supply System
3.1.5.Water Chemistry of Light-Water Reactors
3.1.5.1.Water Chemistry of Pressurized-Water Reactors
3.1.5.1.1.Primary Coolant System
3.1.5.1.2.Secondary System
3.1.5.2.Water Chemistry of Boiling Water Reactors
3.1.5.2.1.Stress Corrosion Cracking
3.1.5.2.2.Radiation Fields
3.1.5.2.3.Fuel Integrity
3.1.5.2.4.Chemistry Guidlines
3.2.Gas-Cooled Graphite-Moderated Reactors
3.2.1.History
3.2.2.Carbon Dioxide-Cooled Reactors
3.2.2.1.Magnox Reactors
3.2.2.2.Advanced Gas-Cooled Reactors
3.2.2.3.Advanced Gas-Cooled Reactor Safety
3.2.2.4.Primary Circuit Chemistry
3.2.2.5.Secondary Circuit Chemistry
3.2.2.6.Operating Experience
3.2.3.Helium-Cooled High-Temperature Reactors
3.2.3.1.Fuel Elements
3.2.3.2.Primary Circuit Materials
3.2.3.3.Safety of High-Temperature Reactors
3.2.3.4.Types of High-Temperature Reactors
3.2.3.5.Chemistry of the Primary Coolant in the High-Temperature Reactor
3.2.3.6.Steam Circuits
3.2.3.7.Nuclear Process Heat
3.3.Graphite-Moderated, Light-Water-Cooled, Pressure Tube Reactors
3.3.1.General Design Characteristics
3.3.2.Reactor Core
3.3.3.Reactor Physics
3.3.4.Instrumentation and Control
3.3.5.Safety Systems
3.3.5.1.Emergency Core Cooling System
3.3.5.2.Accident Localization System
3.3.5.3.Emergency Power Supply
3.3.5.4.Improvements after the Chernobyl Accident
3.3.6.The Chernobyl Accident
3.4.Heavy-Water Reactors
3.4.1.History and Development
3.4.2.Design Features
3.4.3.Types of Heavy-Water Reactors
3.4.3.1.Heavy-Water-Cooled Pressure Tube Reactor
3.4.3.2.Heavy-Water-Cooled Pressure Vessel Reactor
3.4.3.3.Pressure Tube Boiling-Water Reactor (Decommissioned)
4.Fast Reactors
4.1.Function and Design
4.1.1.General Aspects
4.1.2.Sodium as Coolant for Fast Reactor Power Plants
4.1.3.Plant Concepts for Fast Reactor Power Stations
4.1.4.Plant Arrangement
4.1.5.Components and Systems
4.2.Materials
4.2.1.Nuclear Fuels
4.2.2.Cladding and Structural Materials for Fuel Elements
4.2.3.Structural Materials for Components
4.2.4.Application of Materials in Sodium Systems
4.3.Chemical Engineering
4.3.1.Monitoring Sodium Purity
4.3.1.1.Measuring Instruments
4.3.1.2.Chemical Laboratory Analysis
4.3.2.Control of Cover Gas Purity
4.3.3.Purification of Sodium and Cover Gas
4.3.4.Sodium - Water Reactions
4.3.5.Sodium Fires
4.3.6.Purification and Decontamination of Components
5.Fuel Cycle
5.1.Introduction
5.2.Uranium Production, Conversion, and Enrichment
5.2.1.Occurrence and Classification of Deposits
5.2.2.Production
5.2.3.Output and Demand
5.2.4.Conversion
5.2.5.Enrichment
5.3.Fabrication of Fuel Elements
5.3.1.Fuel Assemblies for Light-Water Reactors
5.3.1.1.Functions of Fuel Assemblies
5.3.1.2.Raw Material for Nuclear Fuel
5.3.1.3.Conversion Processes
5.3.1.4.Production of Uranium Dioxide Sintered Pellets
5.3.1.5.Production of Fuel Rods and Fuel Assemblies
5.3.2.Fuel Elements for High-Temperature Reactors
5.3.2.1.General Aspects
5.3.2.2.Production
5.3.3.Fuel Assemblies made from Reprocessed Plutonium
5.3.3.1.Availability of Plutonium
5.3.3.2.Utilization Strategies
5.3.3.3.Requirement for Mixed-Oxide Thermal Fuel Assemblies
5.3.3.4.Requirement for Fast Breeder Fuel Assemblies
5.3.3.5.Problems in Handling Plutonium
5.3.3.6.Fabrication of Mixed-Oxide Fuel Assemblies
5.3.3.7.Radiation Protection and Safety Aspects
5.4.Chemical Reprocessing of Nuclear Fuels
5.4.1.Reprocessing of LWR Fuel Elements
5.4.1.1.General Scheme
5.4.1.2.Fuel Composition and Purification Requirements
5.4.1.3.Mechanical Head-End
5.4.1.4.Fuel Dissolution
5.4.1.5.Feed Clarification and Make-up
5.4.1.6.PUREX Process: Chemistry
5.4.1.7.PUREX Process: Flow Sheet
5.4.1.8.PUREX Process: Product Purification
5.4.1.9.PUREX Process: Extraction Equipment
5.4.1.10.Off-Gas Purification
5.4.1.11.Nuclear Safety
5.4.2.Research and Development
5.4.2.1.Developments in LWR Fuel Reprocessing
5.4.2.2.Reprocessing of Fast Breeder Reactor Fuels
5.5.Radioactive Waste Management
5.5.1.Classification of Radioactive Waste
5.5.1.1.Generic Classification
5.5.1.2.Waste Classification for Disposal
5.5.1.3.Catalog of Waste Types
5.5.2.Conditioning of Radioactive Waste
5.5.2.1.Heat-Generating Radioactive Waste
5.5.2.2.Non-Heat-Generating Radioactive Waste
5.5.3.Origin and Amount of Radioactive Waste
5.5.3.1.Origin of Radioactive Waste
5.5.3.2.Present Amount of Unconditioned and Conditioned Radioactive Waste
5.5.3.3.Future Amounts of Radioactive Waste
5.5.4.Disposal of Radioactive Waste
5.5.4.1.Principles of Waste Disposal
5.5.4.2.Underground Laboratories
5.5.4.3.Near-Surface Repositories
5.5.4.4.Underground Repositories
5.6.Safety Aspects in the Design of Reprocessing and Waste Treatment Plants
5.6.1.Objectives of Protection
5.6.2.Safety Through Multiple Barrier Enclosure
5.6.3.Safety Measures for Protection of Employees
5.6.4.Malfunction and Safety Analysis
5.6.5.Environmental Protection and Radiological Exposure
5.6.6.Radioactive Residual Substances and Waste
5.6.7.Decommissioning and Dismantling
5.6.8.International Coordination of Safety Regulations
6.Nuclear Fusion
6.1.Fusion Physics
6.2.Plasma Confinement and Status of Fusion Research
6.2.1.Magnetic Plasma Confinement
6.2.1.1.Status of Magnetic Confinement Fusion
6.2.1.2.Further Development of Magnetic Confinement Toward a Fusion Reactor
6.2.2.Inertial Confinement Fusion
6.3.Fusion Reactors as Energy Sources
6.3.1.Fusion Power Plants
6.3.2.Energy Resources and some Economic Aspects
6.3.3.Environmental Impact and Safety-Related Aspects of Fusion Power

Power reactors serve to supply energy. The heat created in commercial power reactors is used for the production of electrical energy. The economic motivation for building nuclear power plants is the high energy content of the nuclear fuel uranium and its low cost.

The first large-scale nuclear power plant went on-line at Calder Hall (United Kingdom) in 1956. At the beginning of 2005, 441 nuclear power plant units with a total output of 385 854 MWe were in operation worldwide. Since that time worldwide 103 prototype or commercial units have been shut down. In 2005 22 new nuclear power plants with a capacity of 26 102 MWe were under construction.

In this chapter a survey of the important technical and economic parameters of commercial nuclear power reactors is given. Reactors are classified according to characteristics like neutron energy, fuel, enrichment, fissile material, moderator, coolant, and operational cycle. Numbers and electric capacity of nuclear power plants in operation worldwide are shown.

Beside these technical and economic aspects of power reactors their influence on human life and nature by radiation burdens and radiation damage are outlined. Radiological quantities and units are introduced. Radiation protection from nuclear sources and radiation safety rules in Germany, Europe, and the world complete the survey.