Standard Article

Steel

  1. Dieter Schauwinhold1,
  2. Manfred Toncourt2,
  3. Rolf Steffen2,
  4. Dieter Janke3,
  5. Klaus Schäfer4,
  6. Hatto Jacobi5,
  7. Rudolf Hammer6,
  8. Robert Hentrich7,
  9. Lothar Kucharcik8,
  10. Herbert Wiegels9,
  11. Horst M. Aichinger2,
  12. Friedhelm Sänger10,
  13. Harold Walter11,
  14. Rolf Kümmerling12,
  15. Ulrich Uhl13,
  16. Werner Decker14,
  17. Roger Pankert15,
  18. Hans Hougardy16,
  19. Winfried Dahl17,
  20. Hans Jürgen Grabke16,
  21. Ulrich Kalla2,
  22. Gerhard Kalwa18,
  23. Reinhard Winkelgrund19,
  24. Heinz-Lothar Bünnagel20,
  25. Volker Brückmann20

Published Online: 15 APR 2008

DOI: 10.1002/14356007.a25_063.pub2

Ullmann's Encyclopedia of Industrial Chemistry

Ullmann's Encyclopedia of Industrial Chemistry

How to Cite

Schauwinhold, D., Toncourt, M., Steffen, R., Janke, D., Schäfer, K., Jacobi, H., Hammer, R., Hentrich, R., Kucharcik, L., Wiegels, H., Aichinger, H. M., Sänger, F., Walter, H., Kümmerling, R., Uhl, U., Decker, W., Pankert, R., Hougardy, H., Dahl, W., Grabke, H. J., Kalla, U., Kalwa, G., Winkelgrund, R., Bünnagel, H.-L. and Brückmann, V. 2008. Steel. Ullmann's Encyclopedia of Industrial Chemistry. .

Author Information

  1. 1

    Düsseldorf, Germany

  2. 2

    VDEh, Düsseldorf, Germany

  3. 3

    TU Bergakademie Freiberg, Eisenhütten-Institut, Freiberg, Germany

  4. 4

    GMT, Georgsmarienhütte, Germany

  5. 5

    Mannesmannröhren-Werke AG, Duisburg, Germany

  6. 6

    Thyssen Stahl AG, Düsseldorf, Germany

  7. 7

    Krupp Stahl AG, Siegen, Germany

  8. 8

    Verein Deutscher Giessereifachleute (VDG), Düsseldorf, Germany

  9. 9

    RWTH Aachen, Institut für Bildsame Formgebung, Aachen, Germany

  10. 10

    Universität–Gesamthochschule Duisburg, Germany

  11. 11

    Dortmund, Germany

  12. 12

    Vallourec & MannesmannTubes Deutschland GmbH, Düsseldorf, Germany

  13. 13

    Hattingen, Germany

  14. 14

    Industrieverband Deutscher Schmieden e.V., Hagen-Ernst, Germany

  15. 15

    Union Miniere, Balen, Belgium

  16. 16

    Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

  17. 17

    RWTH Aachen, Institut für Eisenhüttenkunde, Aachen, Germany

  18. 18

    Kaarst, Germany

  19. 19

    Stahl-Informations-Zentrum, Düsseldorf, Germany

  20. 20

    Wirtschaftsvereinigung Stahl, Düsseldorf, Germany

Publication History

  1. Published Online: 15 APR 2008

This is not the most recent version of the article. View current version (15 OCT 2011)

Abstract

The article contains sections titled:

1.Introduction
2.History
2.1.From Prehistoric Times to the Middle Ages
2.1.1.Native Iron
2.1.2.Iron from Ores
2.1.3.Technology of Iron Production
2.2.From the Middle Ages to the 1800s
2.2.1.Bloomery Furnaces
2.2.2.Blast Furnaces
2.2.3.Metal Shaping
2.3.The Industrial Age
2.3.1.Pig Iron Production
2.3.2.Steel Production
2.3.2.1.Crucible Steel
2.3.2.2.Puddled Steel
2.3.2.3.Ingot Steel
2.3.3.Rolled Steel Production
2.3.3.1.Puddled Steel and Steam Power
2.3.3.2.Ingot Steel and Mass Production
3.Crude Steel Production
3.1.Raw Materials
3.1.1.Hot Metal
3.1.2.Scrap
3.1.3.Sponge Iron
3.1.4.Lime
3.2.Physical and Chemical Fundamentals
3.2.1.Thermodynamics
3.2.1.1.Metallic Systems Based on Iron
3.2.1.2.Slag Systems
3.2.1.3.Metal - Slag Reactions
3.2.1.3.1.Refining Reactions
3.2.1.3.2.Dephosphorization
3.2.1.3.3.Desulfurization
3.2.1.3.4.Deoxidation
3.2.1.4.Metal - Gas Reactions
3.2.2.Kinetics and Mass Transfer
3.2.2.1.Kinetics of Heterogeneous Reactions
3.2.2.2.Flow and Mass Transfer Coefficients
3.2.2.2.1.Metal - Glas Phase Boundaries with Nonturbulent Flow
3.2.2.2.2.Metal - Slag Phase Boundaries with Nonturbulent Flow
3.2.2.2.3.Solid (Metal or Slag) - Liquid Phase Boundaries with Nonturbulent Flow
3.2.2.2.4.Mass Transfer with Turbulent Flow
3.3.Production Processes
3.3.1.Oxygen-Blowing Processes
3.3.1.1.LD and OBM Processes
3.3.1.2.Other Developments
3.3.2.Electric Steel Process
3.3.2.1.Special Processes
3.3.2.2.The Siemens - Martin Open Hearth Process
3.3.3.Production of Stainless Steels
3.4.Secondary Metallurgy
3.4.1.Steel Treatment at Atmospheric Pressure
3.4.1.1.Deoxidation
3.4.1.2.Desulfurization
3.4.1.3.Dephosphorization
3.4.1.4.Temperature Control
3.4.2.Vacuum Treatment
3.4.2.1.Decarburization
3.4.2.2.Nitrogen Removal
3.4.2.3.Dehydrogenation
3.5.Casting and Solidification
3.5.1.Fundamentals
3.5.2.Ingot Casting
3.5.3.Continuous Casting
3.5.3.1.The Growth of Strand Casting
3.5.3.2.Productivity
3.5.3.3.Mold Oscillation and Shell Formation
3.5.3.4.Control of Molten Steel Level and Gap Lubrication
3.5.3.5.Support Roller Apron and Secondary Cooling Zone
3.5.3.6.Automation
3.5.3.7.Quality
3.5.3.8.Horizontal Strand Casting
3.5.3.9.Hot Charging or Direct Rolling
3.5.3.10.Casting Thin Slabs
3.5.3.11.New Processes for Hot Steel Strip Production
3.5.3.12.Rationalization
3.5.4.Consumable Electrode Remelting Processes
3.5.4.1.Remelting Processes
3.5.4.2.General Aims of Remelting
3.5.4.3.Remelting Apparatus
3.5.4.4.Results and Applications
3.5.5.Cast Steel and Cast Iron
3.5.5.1.Cast Steel
3.5.5.2.Cast Iron
4.Forming
4.1.Fundamentals
4.1.1.Causes of Plasticity
4.1.2.Workability
4.1.3.Cold Forming
4.1.4.Hot Forming
4.1.5.Forming Processes
4.1.6.Aims of Forming Technology
4.1.6.1.Combination of Casting and Forming
4.1.6.2.Thermomechanical Treatment
4.1.6.3.Simulation of Forming Processes
4.1.6.4.Quality Information Systems
4.2.Hot Working
4.2.1.Reheating Furnaces
4.2.2.Hot Rolling
4.2.2.1.Semifinished Products
4.2.2.2.Flat Products
4.2.2.3.Long Products
4.2.2.4.Tubes
4.2.3.Forging
4.2.3.1.Open Die Forging
4.2.3.2.Closed Die Forging
4.3.Cold Rolling
4.3.1.Introduction
4.3.2.Pickling
4.3.3.Rolling
4.3.4.Annealing
4.3.5.Skin-Pass Rolling
4.3.6.Stainless Steels
4.3.7.Future Developments
5.Surface Coating
5.1.Introduction
5.2.Hot-Dip Coating
5.2.1.Plant and Processes
5.2.2.Other Coating Processes
5.3.Electrolytic Coating (Electroplating)
5.3.1.Plant and Processes
5.3.2.Electroplating Cells
5.3.3.Coating Types
5.4.Vacuum Vapor Deposition
5.4.1.Plant and Processes
5.4.2.Further Developments
5.5.Coil Coating
5.5.1.Plant and Processes
5.5.2.Coating Systems
5.6.Roll-Bonded Cladding
5.6.1.Principles
5.6.2.The Process
5.6.3.Variations
5.7.Summary
6.Uses
6.1.Fundamentals
6.1.1.Microstructure
6.1.1.1.Introduction
6.1.1.2.Phase Diagrams of Iron Alloys
6.1.1.3.Definitions
6.1.1.4.Microstructures in Plain Carbon Steels
6.1.1.5.Microstructures of Alloy Steels
6.1.2.Properties
6.1.2.1.Mechanical Properties
6.1.2.1.1.Behavior Under Unidirectional Loads, at and Below Room Temperature
6.1.2.1.2.Behavior Under Cyclic Loading
6.1.2.1.3.Behavior at Higher Temperatures
6.1.2.2.Chemical Properties
6.1.2.2.1.Introduction
6.1.2.2.2.Uniform Corrosion
6.1.2.2.3.Atmospheric Corrosion
6.1.2.2.4.Passivation
6.1.2.2.5.Pitting Corrosion
6.1.2.2.6.Crevice Corrosion
6.1.2.2.7.Intergranular Corrosion of Stainless Steels
6.1.2.2.8.Stress Corrosion Cracking
6.1.2.2.9.Hydrogen Adsorption and Hydrogen Embrittlement
6.1.2.2.10.Oxidation of Iron
6.1.2.2.11.Oxidation of Carbon Steels and Low-Alloy Steels
6.1.2.2.12.High-Temperature Steels
6.1.2.2.13.Effects of Chlorine in Oxidation
6.1.2.2.14.Sulfidation of Iron and Steel
6.1.2.2.15.Carburization
6.1.2.2.16.Nitriding
6.1.2.2.17.Decarburization, Denitriding, and Hydrogen Attack
6.1.2.3.Physical Properties
6.1.2.3.1.Pure Iron
6.1.2.3.2.α-Iron Solid Solutions
6.1.2.3.3.γ-Iron Solid Solutions
6.1.2.3.4.Other Effects of Structure
6.1.3.Heat Treatment
6.1.3.1.Time - Temperature Transformation Diagrams
6.1.3.2.Heat Treatment of Transformable Steels
6.1.3.2.1.Austenitizing
6.1.3.2.2.Transformations
6.1.3.2.3.Effect of Dimensions
6.1.3.2.4.Quenching and Tempering
6.1.3.2.5.Spheroidized Annealing
6.1.3.2.6.Thermomechanical Treatment
6.1.3.2.7.Surface Hardening
6.1.3.3.Heat Treatment Without Transformation
6.1.3.3.1.Recrystallization
6.1.3.4.Simulation of Heat Treatment
6.2.Uses
6.2.1.Classification of Steel and Steel Products
6.2.1.1.General
6.2.1.2.Definitions for the Classification of Grades of Steel
6.2.1.3.Definitions of Steel Products
6.2.1.4.Designation Systems for Steel
6.2.2.Types of Steel
6.2.2.1.Steels where the Mechanical Properties are Essential
6.2.2.1.1.Normal- and High-Strength Structural and Reinforcing Steels
6.2.2.1.2.Steels Suitable for Heat-Treatment and Surface Hardening
6.2.2.1.3.Steels for Elevated Temperature Applications
6.2.2.1.4.Low-Temperature Steels
6.2.2.1.5.Wear-Resistant Steels
6.2.2.1.6.Steels for Pipelines
6.2.2.2.Steels with Special Chemical Properties
6.2.2.2.1.Stainless Steels
6.2.2.2.2.Heat-Resistant Steels
6.2.2.2.3.Steels for Hydrogen Service at Elevated Temperatures and Pressures
6.2.2.3.Steels with Special Physical Properties
6.2.2.3.1.Soft Magnetic Steels
6.2.2.3.2.Other Steels with Special Physical Properties
6.2.2.4.Steels with Special Processing Properties
6.2.2.4.1.Steels for Flat Products for Cold Forming
6.2.2.4.2.Steels Suitable for Cold Extrusion and Cold Heading
6.2.2.4.3.Machining or Free-Cutting Steels
7.Environmental Protection
7.1.Environmental Aspects of Steel Production and Processing
7.1.1.Production of Steel and Steel Products
7.1.2.Steel Processing and Steel in Use
7.2.Steel Recycling
7.2.1.The Tradition of Steel Recycling
7.2.2.Types of Scrap
7.2.3.Scrap Processing
7.2.3.1.Separation
7.2.3.2.Shearing Machines
7.2.3.3.Presses
7.2.3.4.Shredders
7.2.4.Factors Influencing Recycling
7.2.4.1.Alloy Steels
7.2.4.2.Surface Coatings
7.2.4.3.Pretreatment of Used Steel Products
7.2.5.Economic and Logistic Aspects
7.2.5.1.Scrap Consumption
7.2.5.2.World Market for Scrap
7.2.5.3.Infrastructure and Logistics
8.Economic Aspects
8.1.World Steel Production, Consumption, and Trade
8.2.Steel Intensity and Weight Saving in Steel
8.3.Capital Investment and Subsidies
8.4.Future Prospects