Standard Article


  1. Andres Kriete1,
  2. Heinz Gundlach2,
  3. Severin Amelinckx3,
  4. Ludwig Reimer4

Published Online: 15 JUL 2005

DOI: 10.1002/14356007.b06_213.pub2

Ullmann's Encyclopedia of Industrial Chemistry

Ullmann's Encyclopedia of Industrial Chemistry

How to Cite

Kriete, A., Gundlach, H., Amelinckx, S. and Reimer, L. 2005. Microscopy. Ullmann's Encyclopedia of Industrial Chemistry. .

Author Information

  1. 1

    School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA

  2. 2

    Carl Zeiss, Jena, Federal Republic of Germany

  3. 3

    Universiteit Antwerpen (RUCA), Antwerpen, Belgium

  4. 4

    Physikalisches Insitut Universität Münster, Münster, Federal Republic of Germany

Publication History

  1. Published Online: 15 JUL 2005

Chemistry Terms

Choose one or more boxes to highlight terms.


The article contains sections titled:

1.Modern Optical Microscopy
1.2.Basic Principles of Light Microscopy
1.2.1.Optical Ray Path
1.2.2.Imaging Performance and Resolution
1.2.3.Characteristics and Classification of Lenses
1.2.4.Eyepieces and Condensers
1.3.Illumination and Contrast Generation
1.3.1.Optical Contrast Generation
1.3.2.Fluorescence Microscopy
1.4.Inverted Microscopy
1.5.Optoelectronic Imaging
1.6.Confocal Laser Scanning Microscopy
1.6.1.Basic Principles
1.6.2.Imaging Performance
1.6.4.Imaging Modalities and Biomedical Applications
1.7.Computer Applications in Digital Microscopy
1.7.1.Image Analysis Visualization
1.8.High-Throughput Screening for Histopathology and Drug Development
2.Electron Microscopy
2.1.Introductory Considerations
2.2.Conventional Transmission Electron Microscopy (CTEM)
2.2.2.Scattering by Atoms: Atomic Scattering Factor
2.2.3.Kinematic Diffraction by Crystals, Reciprocal Lattice of Diffraction
2.2.4.Dynamic Diffraction by Crystals Considerations Equations Rocking Curve Absorption, Bormann Effect Fringes Crystalsé Patterns
2.2.5.Operating Modes of the Electron Microscope Optics, High-Magnification Mode Mode
2.2.6.Selected-Area Electron Diffraction (SAED)
2.2.7.Diffraction Contrast Images Modes Contrast Conditions for Defects Textures Contrast and Domain Contrast Field Contrast
2.2.8.Convergent Beam Diffraction of Convergent Beam Patterns Group Determination Group Determination Thickness Determination
2.2.9.High-Resolution Electron Microscopy Formation in an Ideal Microscope Formation in a Real Microscope Limiting Factors Formation Models Interpretation
2.2.10.Scanning Transmission Microscopy
2.2.11.Z-Contrast Images
2.2.12.Analytical Methods Microanalysis Energy Loss Spectrometry (EELS)
2.2.13.Specimen Preparation Contrast Specimens Specimens
2.2.14.Applications to Specific Materials and Problems Structures Particles Studies Epitaxial Layers“In situ” Studies
2.3.Scanning Electron Microscopy
2.3.2.Instrumentation Guns Probe Formation
2.3.3.Electron–Specimen Interactions and Inelastic Scattering Diffusion of Secondary and Backscattered Electrons Charging and Damage
2.3.4.Image Formation and Analysis and Material Contrast Channeling Effects and Measurement of Surface Potentials of Magnetic Fields Induced Current Imaging Methods
2.3.5.Elemental Analysis and Auger Electron Emission Spectrometers Microanalysis X-Ray Techniques