Standard Article

Waste

  1. Karl J. Thomé-Kozmiensky1,
  2. Sophie Willnow1,
  3. Günter Fleischer1,
  4. Wulf-Peter Schmidt1,
  5. Claus Christ2,
  6. Georg Menges3,
  7. Bernd Bilitewski4,
  8. Ulrich Loll5,
  9. Hubert Gromotka6,
  10. Norbert Amsoneit7,
  11. Manfred Baerns8,
  12. Manfred Baerns9,
  13. Frank Majunke10,
  14. Hans-Jürgen Ehrig11,
  15. Hans-Joachim Schneider12,
  16. Volkmar Gossow13,
  17. Fathi Habashi14

Published Online: 15 JAN 2008

DOI: 10.1002/14356007.b08_559.pub2

Ullmann's Encyclopedia of Industrial Chemistry

Ullmann's Encyclopedia of Industrial Chemistry

How to Cite

Thomé-Kozmiensky, K. J., Willnow, S., Fleischer, G., Schmidt, W.-P., Christ, C., Menges, G., Bilitewski, B., Loll, U., Gromotka, H., Amsoneit, N., Baerns, M., Baerns, M., Majunke, F., Ehrig, H.-J., Schneider, H.-J., Gossow, V. and Habashi, F. 2008. Waste. Ullmann's Encyclopedia of Industrial Chemistry. .

Author Information

  1. 1

    Institut für Technischen Umweltschutz, Technische Universität Berlin, Berlin, Germany

  2. 2

    Hoechst Aktiengesellschaft, Frankfurt/Main, Germany

  3. 3

    Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany

  4. 4

    Ingenieurgesellschaft für Technischen Umweltschutz, Dresden, Germany

  5. 5

    Ingenieurbüro für Abwasser-, Abfall- und Aquatechnik, Darmstadt, Germany

  6. 6

    Hessische Industriemüll GmbH, Wiesbaden, Germany

  7. 7

    Zweckverband Sondermüll-Entsorgung Mittelfranken, Schwabach, Germany

  8. 8

    Institut für Angewandte Chemie, Berlin-Adlershof e. V., Berlin, Germany

  9. 9

    Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, Bochum, Germany

  10. 10

    W. C. Heraeus GmbH, Hanau, Germany

  11. 11

    Bergische Universität Gesamthochschule Wuppertal, Wuppertal, Germany

  12. 12

    BRP Consult, Berlin, Germany

  13. 13

    Bilfinger + Berger Umweltbau GmbH, Köln, Germany

  14. 14

    Department of Mining, Metallurgical, and Materials Engineering, Laval University, Quebec City, Canada

Publication History

  1. Published Online: 15 JAN 2008

This is not the most recent version of the article. View current version (15 OCT 2011)

Abstract

The article contains sections titled:

1.Origin of Waste
1.1.Municipal Waste
1.2.Hazardous Waste
1.3.Future Determination of Waste Generation
2.Legal Aspects
2.1.Introduction
2.2.The Recycling Act
2.3.Principles of Recycling
2.3.1.Avoidance before Recovery
2.3.2.Material and Thermal Reclamation
2.4.Legal Formulation of Recycling
2.5.Disposal Standard-TA Abfall
2.5.1.TA Abfall
2.5.2.TA Siedlungsabfall
2.6.Hierarchy of Responsibility
2.7.Approval of Waste Disposal Facilities
2.8.Monitoring of Waste Disposal
2.8.1.Monitoring
2.8.2.Transportation Approval
2.9.Plant Officer for Waste
2.10.Waste Management Concepts and Balances
2.10.1.Waste Management Concepts
2.10.2.Waste Management Balances
2.11.Remediation of Hazardous Waste Sites
2.11.1.Duty to Remediate
2.11.2.Other Duties
2.11.3.Financing of Remediation of Hazardous Waste Sites
2.12.Criminal Offenses and Infringements of Regulations
2.13.Civil Liability
2.13.1.Product Responsibility
2.13.2.Damage Claims
3.Organization of Hazardous-Waste Disposal
4.Life-Cycle Assessment
4.1.Introduction
4.2.Scope and Limits of Life-Cycle Assessments
4.3.Method of Product Life-Cycle Assessment
4.3.1.Goal Definition and Scope
4.3.1.1.Knowledge Interest and System Description
4.3.1.2.Functional Unit
4.3.2.Inventory Analysis
4.3.2.1.Components of the Product Line
4.3.2.2.Development of the Product Line
4.3.2.3.Data Acquisition
4.3.2.3.1.Process Description
4.3.2.3.2.Acquisition of Basic Data
4.3.2.4.Material and Energy Balance
4.3.2.4.1.Process Balance
4.3.2.4.2.Process Modeling and Data Correction
4.3.2.5.Allocations
4.3.2.5.1.Process Product and Coproducts
4.3.2.5.2.Object of Investigation
4.3.2.5.3.Open-Loop Recycling
4.3.2.5.4.Equality of Benefits
4.3.3.Impact Assessment
4.3.3.1.Classification
4.3.3.2.Characterization
4.3.3.2.1.Greenhouse Effect
4.3.3.2.2.Ozone Depletion
4.3.3.2.3.Acidification
4.3.3.2.4.Eutrophication
4.3.4.Interpretation
4.3.4.1.Objective and Requirements
4.3.4.2.Interpretation Approaches
4.3.4.2.1.Normalizing, Quantifying Methods
4.3.4.2.2.Verbal-Argumentative Assessment
4.3.4.2.3.Reductionistic Approach
4.3.5.Improvement Assessment (Optional)
4.4.Critical Review
5.Waste Management in the Chemical Industry
5.1.Introduction
5.2.Chemical Industry Wastes
5.3.Waste-Management Concepts
5.3.1.Residues and Wastes from Production
5.3.2.Production-Oriented Management
5.3.3.Product-Oriented Management
5.4.Disposal Measures
5.4.1.Logistics
5.4.2.Waste Combustion
5.4.3.Landfill Disposal of Wastes
5.4.4.Asbestos Disposal
5.5.Utilization of Product Wastes
5.5.1.Plastics Recycling
5.5.2.Refrigerant Recycling
5.5.3.Recycling of Used Packaging Materials
5.5.4.Paint Recycling
5.6.Results of Waste Management
6.Prevention of Waste
6.1.Introduction
6.2.Distinction between Primary and Secondary Waste Prevention
6.3.Waste Prevention and Reduction of Environmental Burdens
6.4.Specific Actions to Reduce Environmental Burdens
6.4.1.Decreasing Resource Consumption
6.4.2.Reduction of Waste and Emission Quantities
6.4.3.Reduction of Pollution Potential
6.4.4.Extending Product Service Life
6.4.5.Improvement of Recyclability
6.5.Integrated Measures to Reduce Environmental Burdens
6.5.1.Product-Integrated Environmental Protection
6.5.2.Production-Integrated Environmental Protection
6.6.Determination of Environmental Burdens
7.Recycling of Waste
7.1.Introduction
7.1.1.General Aspects
7.1.2.Forms of Recycling
7.1.3.Prerequisites for and Limitations of Recycling
7.1.4.Selection of Disposal Route
7.1.5.Recycling Rates
7.2.Plastics
7.2.1.Introduction
7.2.2.Mechanical Recycling
7.2.2.1.Chemical Basis for Plastics Recycling
7.2.2.2.Pure Wastes
7.2.2.3.Mixed and Soiled Plastics Wastes
7.2.2.4.Fiber Composites and Other Thermosets
7.2.2.5.Outlook for Mixed Wastes in Blends
7.2.3.Degradation to Molecular Constituents
7.2.3.1.Biodegradable Plastics
7.2.3.2.Chemical Recycling
7.2.3.2.1.Chemical Degradation
7.2.3.2.2.Thermal Degradation
7.2.4.Combustion (Energy or Thermal Recycling)
7.2.4.1.Combustion in Waste Incinerators
7.2.4.2.Shredded Waste as Fuel for Sewage Sludge
7.2.4.3.Combustion with Pure Oxygen
7.3.Solvents
7.3.1.Introduction
7.3.2.Processing of Solvent Wastes
7.3.2.1.General Aspects
7.3.2.2.Mechanical Separation of Solids
7.3.2.3.Treatment of Halogenated Solvents
7.3.2.4.Treatment of Halogen-Free Solvents
7.4.Paints
7.4.1.Introduction
7.4.2.Recycling of Paint Residues
7.4.2.1.General Aspects
7.4.2.2.Internal Paint Recycling
7.4.2.3.External Paint Recycling
7.5.Metals
7.5.1.Introduction
7.5.2.Production Waste Recycling
7.5.3.Recycling during Product Use and Product Reconditioning
7.5.4.Product Waste Recycling
7.5.4.1.Product-Specific Recycling
7.5.4.1.1.Automobiles
7.5.4.1.2.Catalytic Converters
7.5.4.1.3.Lead - Acid Batteries
7.5.4.1.4.Dry-Cell Batteries
7.5.4.1.5.Electronics Scrap; Circuit Boards
7.5.4.2.Material-Specific Recycling
7.5.4.2.1.Steel
7.5.4.2.2.Aluminum
7.5.4.3.Recycling of Material Wastes
7.5.5.Recycling of Residues
7.6.Sludges
7.6.1.General
7.6.2.Quantities of Sewage Sludge Treated
7.6.3.Requirements for Sludge Recycling and Disposal
7.6.4.Sewage Sludge Treatment Processes
7.6.5.Unit Operations in Sewage Sludge Treatment
7.6.5.1.Thickening and Dewatering
7.6.5.2.Stabilization
7.6.5.3.Disinfection
7.6.5.4.Conditioning
7.6.5.5.Drying
7.6.6.Quantities of Other Sludges;Disposal Options
7.6.6.1.Industrial Production Sludges
7.6.6.2.Water Treatment Plant Sludges
7.6.6.3.Dredging Sludges
7.6.6.4.Sludges from Mining
8.Intermediate Storage of Hazardous Wastes
8.1.Introduction
8.2.Intermediate Storage Sites
8.3.Zone Structure of an Intermediate Storage Site
8.4.Procedures at an Intermediate Storage Site
8.5.Soil Protection
8.6.Conclusions
9.Treatment of Waste
9.1.Physicochemical Treatment
9.1.1.Introduction
9.1.2.Types, Origin, and Properties of Wastes
9.1.3.Treatment Processes
9.1.4.Requirements for Construction and Operation of Physicochemical Treatment Plants
9.1.5.Technological Concept of Physicochemical Treatment Plants
9.1.5.1.Treatment Plant for Inorganically Contaminated Wastes
9.1.5.2.Treatment Plant for Organically Contaminated Wastes
9.1.6.Environmental Requirements
9.1.7.Storage and Transportation
9.1.8.Legal and Economic Aspects
9.2.Hydrolysis and Alcoholysis of Plastics Wastes
9.2.1.Introduction
9.2.2.State of the Art
9.2.2.1.Hydrolysis of Polyurethanes
9.2.2.2.Alcoholysis of Polyurethanes
9.2.2.3.Hydrolysis and Alcoholysis of Polyesters and Polyamides
9.2.2.4.Alcoholysis of Mixed Plastics
9.2.3.Conclusions and Outlook
9.3.Incineration
9.3.1.Grate Firing
9.3.2.Fluidized-Bed Firing
9.3.3.Rotary-Kiln Firing
9.4.Pyrolysis and Gasification
9.4.1.Principles of Waste Pyrolysis
9.4.2.Principles of Gasification of Waste
9.4.3.Processes
9.4.3.1.Pyrolysis - Combustion Process
9.4.3.2.Thermoselect Process
9.4.3.3.Noell Conversion Process
10.Deposition
10.1.Deposition Aboveground
10.1.1.Introduction
10.1.2.Classification of Landfills
10.1.3.Landfill Siting
10.1.4.Landfill Safety Analyses
10.1.5.Lining and Drainage Systems
10.1.6.Leachate and Gas Formation in Landfills
10.1.6.1.Processes in the Landfill
10.1.6.2.Water Balance
10.1.6.3.Leachate Quality
10.1.6.4.Leachate Treatment
10.1.6.5.Gas Formation
10.1.6.6.Landfill Gas Recovery
10.1.7.Landfill Operation
10.2.Underground Deposition
10.2.1.Introduction
10.2.2.Types of Mines and Their Relevance to Waste Deposition and Recycling
10.2.3.Safety Requirements for Operation and Closure of an Underground Deposition Site or a Mine Subject to Stowage
10.2.4.Wastes and Residues for Deposition in Mined Cavities
10.2.5.Examples of Spaces Used for Waste Deposition and Spaces Packed with Residues Not Generated in Mining
10.3.Sealing of Existing Sites
11.Acknowledgement