Standard Article

Surface and Thin-Film Analysis, 2. Electron Detection

  1. John C. Rivière1,
  2. Heinrich F. Arlinghaus2,
  3. Herbert Hutter3,
  4. Holger Jenett4,
  5. Peter Bauer5,
  6. Leopold Palmetshofer6

Published Online: 15 OCT 2011

DOI: 10.1002/14356007.o25_o08

Ullmann's Encyclopedia of Industrial Chemistry

Ullmann's Encyclopedia of Industrial Chemistry

How to Cite

Rivière, J. C., Arlinghaus, H. F., Hutter, H., Jenett, H., Bauer, P. and Palmetshofer, L. 2011. Surface and Thin-Film Analysis, 2. Electron Detection. Ullmann's Encyclopedia of Industrial Chemistry. .

Author Information

  1. 1

    Harwell Laboratory, AEA Technology, Didcot, United Kingdom

  2. 2

    Physical Institute, Westfälische Wilhelms-University, Münster, Germany

  3. 3

    Institute of Analytical Chemistry, University of Technology, Vienna, Austria

  4. 4

    Institute of Spectrochemistry and Applied Spectroscopy (ISAS), Dortmund, Germany

  5. 5

    Institute of Experimental Physics, Johannes Kepler University, Linz, Austria

  6. 6

    Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Linz, Austria

Publication History

  1. Published Online: 15 OCT 2011

Chemistry Terms

Choose one or more boxes to highlight terms.

Abstract

The article contains sections titled:

1.X-Ray Photoelectron Spectroscopy (XPS)
1.1.Principles
1.2.Instrumentation
1.2.1.Vacuum Requirements
1.2.2.X-Ray Sources
1.2.3.Synchrotron Radiation
1.2.4.Electron Energy Analyzers
1.2.5.Spatial Resolution
1.3.Spectral Information and Chemical Shifts
1.4.Quantification, Depth Profiling, and Imaging
1.4.1.Quantification
1.4.2.Depth Profiling
1.4.3.Imaging
1.5.The Auger Parameter
1.6.Applications
1.6.1.Catalysis
1.6.2.Polymers
1.6.3.Corrosion and Passivation
1.6.4.Adhesion
1.6.5.Superconductors
1.6.6.Interfaces
2.Ultraviolet Photoelectron Spectroscopy (UPS)
3.Auger Electron Spectroscopy (AES)
3.1.Principles
3.2.Instrumentation
3.2.1.Vacuum Requirements
3.2.2.Electron Sources
3.2.3.Electron Energy Analyzers
3.3.Spectral Information
3.4.Quantification and Depth Profiling
3.4.1.Quantification
3.4.2.Depth Profiling
3.5.Applications
3.5.1.Grain Boundary Segregation
3.5.2.Semiconductor Technology
3.5.3.Thin Films and Interfaces
3.5.4.Surface Segregation
4.Scanning Auger Microscopy (SAM)
5.Other Electron-Detecting Techniques
5.1.Auger Electron Appearance Potential Spectroscopy (AEAPS)
5.2.Electron Energy Loss Methods
5.2.1.Electron Energy Loss Spectroscopy (EELS) and Core-Electron Energy Loss Spectroscopy (CEELS)
5.2.2.High-Resolution Electron Energy Loss Spectroscopy (HREELS)
5.3.Diffraction Methods
5.3.1.Low-Energy Electron Diffraction (LEED)
5.3.2.Reflection High-Energy Electron Diffraction (RHEED)
5.4.Ion-Excitation Method
5.4.1.Ion (Excited) Auger Electron Spectroscopy (IAES)
5.4.2.Ion-Neutralization Spectroscopy (INS)
5.4.3.Metastable Quenching Spectroscopy (MQS)
5.5.Inelastic Electron Tunneling Spectroscopy (IETS)