This is not the most recent version of the article. View current version (12 DEC 2012)

Intervention Protocol

You have free access to this content

Oral iron supplementation with or without folic acid for women during pregnancy

  1. JP Pena-Rosas,
  2. FE Viteri,
  3. K Mahomed

Editorial Group: Cochrane Pregnancy and Childbirth Group

Published Online: 19 APR 2004

DOI: 10.1002/14651858.CD004736


How to Cite

Pena-Rosas JP, Viteri FE, Mahomed K. Oral iron supplementation with or without folic acid for women during pregnancy (Protocol). The Cochrane Database of Systematic Reviews 2004, Issue 2. Art. No.: CD004736. DOI: 10.1002/14651858.CD004736.

Author Information

*Juan Pena-Rosas, Visiting Scientist, Children's Hospital and Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA, 94609, USA. juanpablopenarosas@hotmail.com.

Publication History

  1. Published Online: 19 APR 2004

SEARCH

This is not the most recent version of the article. View current version (12 DEC 2012)

 

Background

  1. Top of page
  2. Background
  3. Objectives
  4. Criteria for considering studies for this review
  5. Search methods for identification of studies
  6. Methods of the review
  7. Potential conflict of interest
  8. Acknowledgements
  9. Sources of support

Iron deficiency anaemia, the late manifestation of chronic iron deficiency, is the most common nutrient deficiency among pregnant women (WHO 1992). Iron deficiency is caused by an insufficient supply of iron to the cells following depletion of the body's reserves (Viteri 1998). The main causes of iron deficiency are a diet poor in absorbable iron, an increased requirement for iron (e.g. pregnancy) or a loss of iron due to parasitic infections (Crompton 2002; INACG 2002b).

Although haemoglobin and haematocrit are commonly used to screen for iron deficiency, their low values are not specific to iron deficiency. Anaemia in pregnancy is diagnosed if haemoglobin (Hb) concentration is lower than 110 g/L during the first and third trimesters or lower than 105 g/L during the second trimester. Iron deficiency anaemia is defined as anaemia accompanied with depleted iron stores and signs of a compromised supply of iron to the tissues (WHO 2001). Iron deficiency can be identified using laboratory tests such as serum ferritin, serum iron, transferrin and transferrin receptors. However, these tests are often not readily available and have limitations in their interpretation in some settings and conditions. Each test does not correlate closely with one another because each reflects a different aspect of iron metabolism. The use of multiple indicators is useful for population-based assessments of iron deficiency anaemia, when this is feasible.

The consequences of iron deficiency anaemia are serious and can include diminished intellectual and productive capacity (Hunt 2002) and possibly increased susceptibility to infections (Oppenheimer 2001). During pregnancy, low Hb levels, indicative of moderate (between 70 and 90 g/L) or severe anaemia (less than 70 g/L), are associated with maternal and child mortality and infectious diseases (INACG 2002a). Also, low Hb levels may be associated with low birthweight, heavier placentas and increased frequency of prematurity. Favourable pregnancy outcomes occur 30% to 45% less often in anaemic mothers, and their infants have less than one half of normal iron reserves. Iron deficiency affects adversely the cognitive performance and development and physical growth of these infants (WHO 2001). High haemoglobin levels (greater than 130 g/L) have also been associated with negative pregnancy outcomes (Hytten 1964; Hytten 1971; Murphy 1986; Scholl 1997).

The association between iron deficiency without anaemia and adverse perinatal outcomes is less clear. Some studies have shown an association between iron deficiency and preterm delivery and subsequent low birthweight, inadequate pregnancy weight gain, and decreased defences against infections (Garn 1981; Prema 1982; Kandoi 1991; Scholl 1992).

Interventions to control iron deficiency and iron deficiency anaemia include education, control of parasitic infections, improvement of sanitation, iron supplementation and iron fortification (INACG 1977). The amount of iron that can be absorbed from diet alone is insufficient to cover the increased iron requirements during pregnancy. Most women would need additional iron as well as sufficient iron stores to prevent iron deficiency (Bothwell 2000). Thus, direct iron supplementation has been extensively used in most low- and middle-income countries as an intervention to combat iron deficiency and anaemia during pregnancy. It has been recommended that iron supplements also contain folic acid, an essential B-vitamin. The rationale for this combination lies in the need of folic acid to cover the increased requirements of pregnancy, due to the rapidly dividing cells in the fetus and elevated urinary losses.

There is evidence to show that iron supplementation with or without folic acid during pregnancy results in a substantial reduction of women with haemoglobin levels less than 100 g/L in late pregnancy, at delivery and six weeks postpartum (Mahomed 2003a; Mahomed 2003b; Villar 2003). However, the impact of iron supplementation interventions under field conditions has been limited and its effectiveness questioned (Beaton 1999). The failure has been attributed to inadequate infrastructure and poor compliance (Mora 2002) although few studies have evaluated this issue adequately. It has been suggested that the problem may reside in the sole expectation of this intervention to improve haemoglobin concentration, rather than maternal or infant health (Beaton 2000).

International organizations have been advocating routine iron and folate supplementation for every pregnant woman in areas of high anaemia prevalence (Villar 1997; Beard 2000). While iron supplementation with or without folic acid has been used in a variety of doses and regimens, current recommendations include the provision of a daily dose of 60 mg of iron for pregnant, non-anaemic women if supplementation for more than six months is possible and an increased dose of 120 mg of iron daily if the duration of supplementation is shorter or the women are anaemic (INACG 1998). This supplement should include 400 µg of folic acid or lower doses if this amount is not available.

Less frequent regimens of supplementation, such as weekly or fortnightly with iron alone or in conjunction with folic acid, have been evaluated in the last decade as a promising innovative regimen. The rationale is that taking iron less frequently increases compliance due to fewer side-effects, particularly gastrointestinal effects (heartburn, nausea, vomiting, diarrhoea, or constipation). However, some authors have questioned this belief indicating that the main reason for the poor compliance with the programs is the unavailability of iron supplements for the targeted women (Galloway 1994). Recently, other potentially detrimental effects have been associated with excess iron intake (i.e. cell damage from the production of reactive oxygen species) and with higher levels of haemoglobin concentrations (Casanueva 2003).

This review will combine the two currently published Cochrane Reviews on iron and iron and folate supplementation that have clearly shown improvements on biochemical and haematological parameters, and evaluate the issues related to alternative doses and periodicity as well as the potential hazards of these interventions (Mahomed 2003a; Mahomed 2003c).

 

Objectives

  1. Top of page
  2. Background
  3. Objectives
  4. Criteria for considering studies for this review
  5. Search methods for identification of studies
  6. Methods of the review
  7. Potential conflict of interest
  8. Acknowledgements
  9. Sources of support

To assess the efficacy, effectiveness and safety of daily or intermittent supplementation of pregnant women with iron alone or in conjunction with folic acid.

The effectiveness of different treatments for iron deficiency anaemia in pregnancy (Cuervo 2003) and the effects of supplementation with iron and vitamin A (Van den Broek 2003) are covered in other Cochrane Reviews. The effectiveness of vitamin C will be covered in another Cochrane Review currently in preparation (Rumbold 2003). The effects of supplementation with folic acid alone (Mahomed 2003c) or its effectiveness on the prevalence of neural tube defects periconceptionally is also evaluated elsewhere (Lumley 2003).

 

Criteria for considering studies for this review

  1. Top of page
  2. Background
  3. Objectives
  4. Criteria for considering studies for this review
  5. Search methods for identification of studies
  6. Methods of the review
  7. Potential conflict of interest
  8. Acknowledgements
  9. Sources of support
 

Types of studies

Randomised and quasi-randomised trials comparing any form of oral iron/folic acid supplements with no treatment/placebo or alternative supplementation regimens. Studies reporting combinations with other micronutrients will be excluded.

 

Types of participants

Pregnant women of any gestational age, parity and number of fetuses.

 

Types of intervention

Daily oral supplementation with iron or iron-folic acid versus no supplementation/placebo.
Daily oral supplementation with iron or iron-folic acid versus intermittent (weekly, twice weekly or thrice weekly) regimens.

 

Types of outcome measures

The outcomes of this review will be maternal and perinatal and infant postpartum clinical and laboratory outcomes. The following outcomes will be sought for this review.

Maternal
Premature delivery (< 37 weeks' gestation)
Very premature delivery (< 34 weeks' gestation)
Severe anaemia at term (defined as Hb < 70 g/L)
Severe anaemia at any time during second or third trimester (defined as Hb < 70 g/L)
Severe anaemia at postpartum (defined as Hb < 80 g/L)
Moderate anaemia at term (defined as Hb > 70 g/L and < 90 g/L)
Moderate anaemia at any time during second or third trimester (defined as Hb > 70/L and < 90 g/L)
Moderate anaemia at postpartum (defined as Hb > 80 g/L and < 100 g/L)
Moderate-severe haemoconcentration at term (defined as Hb > 130 g/L)
Moderate-severe haemoconcentration during second or third trimester (defined as Hb > 130 g/L)
Mean Corpuscular Volume at term (mean values and standard deviation)
Mean Corpuscular Haemoglobin at term (mean values and standard deviation)
Haemoglobin concentration at term (mean values and standard deviation, adjusted by altitude)
Haemoglobin concentration within one month postpartum (mean values and standard deviation, adjusted by altitude)
Ferritin concentration at term (mean values and standard deviation)
Ferritin concentration one month postpartum (mean values and standard deviation)
Transferrin receptors at term (mean values and standard deviation)
Iron deficiency at term (as defined by two or more indicators)
Iron deficiency anaemia at term (as defined by trial authors based on two or more indicators)
Infection during pregnancy (including urinary tract infections and others as specified by trial authors)
Puerperal infection (as defined by trial authors)
Antepartum haemorrhage (as defined by trial authors)
Postpartum haemorrhage (intrapartum and postnatal, as defined by trial authors)
Transfusion given (as defined by trial authors)

Side-effects (any)
Diarrhoea
Constipation
Nausea
Heartburn
Vomiting
Non-compliance with allocated intervention
Rejection of allocated intervention
Maternal death (any known)
Maternal wellbeing/satisfaction (as defined by trial authors)
Placental abruption (as defined by trial authors)
Premature rupture of membranes (as defined by trial authors)

Pre-eclampsia (as defined by trial authors)

Infant
Low birthweight (< 2500 g among singleton births)
Very low birthweight (< 1500 g among singleton births)
Birthweight (mean values and standard deviation)
Perinatal mortality
Infant Hb concentrations at one month
Infant ferritin concentration at one month
Infant Hb concentrations at three months
Infant ferritin concentration at three months
Infant Hb concentrations at six months
Infant ferritin concentration at six months
Long-term infant developmental (as defined by trial authors)
Admission to special care unit

Other outcomes reported by trial authors will be recorded and labelled as 'not pre-specified'.

 

Search methods for identification of studies

  1. Top of page
  2. Background
  3. Objectives
  4. Criteria for considering studies for this review
  5. Search methods for identification of studies
  6. Methods of the review
  7. Potential conflict of interest
  8. Acknowledgements
  9. Sources of support

See: Cochrane Pregnancy and Childbirth Group methods used in reviews.

We will search the Cochrane Pregnancy and Childbirth Group trials register. The Cochrane Pregnancy and Childbirth Group's Trials Register is maintained by the Trials Search Co-ordinator and contains trials identified from:
1. quarterly searches of the Cochrane Central Register of Controlled Trials (CENTRAL);
2. monthly searches of MEDLINE;
3. handsearches of 30 journals and the proceedings of major conferences;
4. weekly current awareness search of a further 37 journals.

Details of the search strategies for CENTRAL and MEDLINE, the list of handsearched journals and conference proceedings, and the list of journals reviewed via the current awareness service can be found in the "Search strategies for identification of studies" section within the editorial information about the Cochrane Pregnancy and Childbirth Group.

Trials identified through the searching activities above are given a code (or codes) depending on the topic. The codes are linked to review topics. The Trials Search Co-ordinator searches the register for each review using these codes rather than keywords.

Additionally, we will contact the Iron Deficiency Project Advisory Service (IDPAS), Micronutrient Initiative (MI), International Anaemia Consultative Group (INACG), WHO Maternal and Reproductive Health and WHO Nutrition Division for the identification of ongoing and unpublished studies.

 

Methods of the review

  1. Top of page
  2. Background
  3. Objectives
  4. Criteria for considering studies for this review
  5. Search methods for identification of studies
  6. Methods of the review
  7. Potential conflict of interest
  8. Acknowledgements
  9. Sources of support

We will assess trials for methodological quality using the criteria in the Cochrane Reviewers' Handbook (Clarke 2003) for adequacy of allocation concealment: adequate (A), unclear (B), inadequate (C) or that allocation concealment was not used (D). We will also collect information on blinding of outcome assessment and loss to follow up and incorporate in the additional table of methodological quality. Blinding is A when both the participant and care provider/assessor are blind to the treatment, B when either the participant or care provider/assessor is blind to the treatment and C when it is unclear or is open. Follow up will be considered adequate when more than 80% of subjects were included in the analysis, B if unclear, and C if less than 80% of those randomised into the trial were included in the analysis.

Two independent reviewers will assess the eligibility of identified studies. The contact reviewer will extract data from the reports. We will assess the number of losses to follow up and postrandomisation exclusions systematically for each trial. We will include quasi-randomised studies and conduct a sensitivity analysis. We will also include cluster randomised studies and will adjust their samples sizes (Clarke 2003) if sufficient information is available to allow for this.

We will design a form to facilitate the process of data extraction and to request additional (unpublished) information from the authors of the original reports. We will enter data onto the RevMan computer software (RevMan 2003). Any discrepancies between the reviewers in either the decision to include/exclude studies or in data extraction will be resolved by discussion and we will request clarification from the authors of the original reports if necessary. For dichotomous data we will use relative risk and for continuous data we will use weighted mean difference, unless the trials report the outcomes on different scales that cannot be converted to a common scale. In this case, we will use the standard mean difference. We will test for heterogeneity between the trials using the I2 statistic test available in RevMan version 4.2. In the absence of heterogeneity, the results will be pooled using a fixed effect model. In the presence of significant heterogeneity, a sensitivity analysis is planned based on the quality of the studies. A study will be considered of high quality if it is graded as adequate or A in the randomisation and allocation concealment and at least adequate (one additional grade A) in either the blinding or the loss to follow-up study characteristics.

Supplementation regimens will be defined as follows: daily, when the person is advised to take the dose of iron or iron-folate provided every day either as a single or repeated doses; intermittent, any dose of iron or iron-folate ingested less frequently than daily (alternate days, twice a week or weekly).

We will conduct a total of 14 comparisons:
1. any iron alone versus no intervention/placebo;
2. daily iron alone versus no intervention/placebo;
3. intermittent iron alone versus no intervention/placebo;
4. daily iron alone versus intermittent iron alone;
5. any iron-folate versus no intervention/placebo;
6. daily iron-folate versus no intervention/placebo;
7. intermittent iron-folate versus no intervention/placebo;
8. daily iron-folate versus intermittent iron-folate.

We will conduct subgroup analysis based on the following criteria:
1. early gestational age (less than 20 weeks pregnancy and pre-pregnancy);
2. late gestational age (more than 20 weeks pregnancy);
3. anaemic (Hb below 110 g/L during first and third trimesters or below 105 g/L in second trimester);
4. non-anaemic (Hb 110 g/L or above during first and third trimesters or Hb 105 g/L or above if in second trimester) at start of supplementation;
5. low compliance with treatment (less than 50% intended);
6. high compliance (50% or more);
7. daily low dose (60 mg elemental iron or less);
8. daily higher dose (more than 60 mg elemental iron).

 

Potential conflict of interest

  1. Top of page
  2. Background
  3. Objectives
  4. Criteria for considering studies for this review
  5. Search methods for identification of studies
  6. Methods of the review
  7. Potential conflict of interest
  8. Acknowledgements
  9. Sources of support

None known.

 

Acknowledgements

  1. Top of page
  2. Background
  3. Objectives
  4. Criteria for considering studies for this review
  5. Search methods for identification of studies
  6. Methods of the review
  7. Potential conflict of interest
  8. Acknowledgements
  9. Sources of support

This protocol was developed during the Fellowship Programme organized by the Cochrane Infectious Diseases Group in July 2003. The Department for International Development (UK) supports this programme through the Effective Health Care Alliance Programme at the Liverpool School of Tropical Medicine.

We would also like to thank the staff at the editorial office of the Cochrane Pregnancy and Childbirth Group in Liverpool for their support in the preparation of this protocol and, in particular, Professor Zarko Alfirevic for his guidance in the preparation of this protocol.

 

Sources of support

  1. Top of page
  2. Background
  3. Objectives
  4. Criteria for considering studies for this review
  5. Search methods for identification of studies
  6. Methods of the review
  7. Potential conflict of interest
  8. Acknowledgements
  9. Sources of support
 

External sources of support

  • No sources of support supplied

 

Internal sources of support

  • Children's Hospital and Oakland Research Institute (CHORI) USA

References

Additional references

  1. Top of page
  2. Abstract
  3. Background
  4. Objectives
  5. Criteria for considering studies for this review
  6. Search methods for identification of studies
  7. Methods of the review
  8. Potential conflict of interest
  9. Acknowledgements
  10. Sources of support
  11. Additional references
  12. References to other published versions of this review
Beard 2000
  • Beard J. Effectiveness and strategies of iron supplementation during pregnancy. American Journal of Clinical Nutrition 2000;71(5):1288-94S.
Beaton 1999
  • Beaton GH, McCabe G. Efficacy of intermittent iron supplementation in the control of iron deficiency anaemia in developing countries. An analysis of experience. The Micronutrient Initiative, 1999.
Beaton 2000
  • Beaton GH. Iron needs during pregnancy: do we need to rethink our targets?. American Journal of Clinical Nutrition 2000;72(1 Suppl):265-71S.
Bothwell 2000
  • Bothwell TH. Iron requirements in pregnancy and strategies to meet them. American Journal of Clinical Nutrition 2000;72(1 Suppl):257-64S.
Casanueva 2003
  • Casanueva E, Viteri FE. Iron and oxidative stress in pregnancy. Journal of Nutrition 2003;133(5):1700S-8S.
Clarke 2003
  • Clarke M, Oxman AD. Cochrane Reviewers’ Handbook 4.2.0 [updated March 2003]. In: The Cochrane Library, 2, 2003. Oxford: Update Software.
Crompton 2002
  • Crompton DW, Nesheim MC. Nutritional impact of intestinal helminthiasis during the human life cycle. Annual Review of Nutrition 2002;22:35-59.
Cuervo 2003
  • Cuervo LG, Mahomed K. Treatments for iron deficiency anaemia in pregnancy (Cochrane Review). In: The Cochrane Library, 2, 2003. Oxford: Update Software. 10.1002/14651858.CD003094
Galloway 1994
  • Galloway R, McGuire J. Determinants of compliance with iron supplementation: supplies, side effects, or psychology?. Social Science and Medicine 1994;39(3):381-90.
Garn 1981
  • Garn SM, Ridella SA, Petzold AS, Falkner F. Maternal hematologic levels and pregnancy outcomes. Seminars in Perinatology 1981;5:155-62.
Hunt 2002
  • Hunt JM. Reversing productivity losses from iron deficiency: the economic case. Journal of Nutrition 2002;132(4 Suppl):794-801S.
Hytten 1964
  • Hytten FE, Leitch I. The physiology of human pregnancy. Oxford: Blackwell Scientific Publications, 1964:14.
Hytten 1971
  • Hytten FE, Leitch I, Baird D. The physiology of human pregnancy. Second Edition. Oxford: Blackwell Scientific Publications, 1971:1-43.
INACG 1977
  • International Anaemia Consultative Group (INACG). Guidelines for the eradication of iron deficiency anaemia. A report of the International Nutritional Anaemia Consultative Group. Washington, DC.: The Nutrition Foundation 1977:1-29.
INACG 1998
  • Stoltzfus R, Dreyfuss M. Guidelines for the use of iron supplements to prevent and treat iron deficiency anaemia. Washintong DC.: ILSI Press, 1998.
INACG 2002a
  • International Anemia Consultative Group (INACG). Why is iron important and what to do about it: a new perspective. Report of the 2001 INACG Symposium 2001 February 15-16; Hanoi, Vietnam, 2002:1-50.
INACG 2002b
  • International Anemia Consultative Group INACG. Anemia, iron deficiency and iron deficiency anemia. 2002:6.
Kandoi 1991
  • Kandoi A, Bhatia BD, Pandey LK, Pandey S, Sen PC, Satya K. Cellular immunity status in anaemia in pregnancy. Indian Journal of Medical Research 1991;94:11-5.
Lumley 2003
  • Lumley J, Watson L, Watson M, Bower C. Periconceptional supplementation with folate and/or multivitamins for preventing neural tube defects (Cochrane Review). In: The Cochrane Library, 2, 2003. Oxford: Update Software. 10.1002/14651858.CD001056
Mahomed 2003a
  • Mahomed K. Iron supplementation in pregnancy (Cochrane Review). In: The Cochrane Library, 3, 2003. Oxford: Update Software. 10.1002/14651858.CD000117
Mahomed 2003b
  • Mahomed K. Folate supplementation in pregnancy (Cochrane Review). In: The Cochrane Library, 3, 2003. Oxford: Update Software. 10.1002/14651858.CD000183
Mahomed 2003c
  • Mahomed K. Iron and folate supplementation in pregnancy (Cochrane Review). In: The Cochrane Library, 2, 2003. Oxford: Update Software. 10.1002/14651858.CD001135
Mora 2002
  • Mora JO. Iron supplementation: overcoming technical and practical barriers. Journal of Nutrition 2002;132(4 suppl):853-5S.
Murphy 1986
  • Murphy JF, O'Riordan J, Newcombe RG, Coles EC, Pearson JF. Relation of haemoglobin levels in first and second trimesters to outcome. Lancet 1986;3(1):992-5.
Oppenheimer 2001
  • Oppenheimer SJ. Iron and its relation to immunity and infectious disease. Journal of Nutrition 2001;131:616-35S.
Prema 1982
  • Prema K, Ramalakshmi BA, Madhavapeddi R, Babu S. Immune status of anaemic pregnant women. British Journal of Obstetrics and Gynaecology 1982;89:222-5.
RevMan 2003
  • The Cochrane Collaboration. Review Manager (RevMan). 4.2 for Windows. Oxford, England: The Cochrane Collaboration, 2003.
Rumbold 2003
  • Rumbold A, Crowther C. Vitamin C supplementation in pregnancy (Protocol for a Cochrane Review). In: The Cochrane Library, 2, 2003. Oxford: Update Software.
Scholl 1992
  • Scholl TO, Hediger, ML, Fischer RL, Shearer JW. Anaemia vs. iron deficiency: increased risk of preterm delivery in a prospective study. American Journal of Clinical Nutrition 1992;55:985-8.
Scholl 1997
  • Scholl TO, Hediger ML, Bendich A, Schall JI, Smith WK, Krueger PM. Use of multivitamin/mineral prenatal supplements: influence on the outcome of pregnancy. American Journal of Epidemiology 1997;146:134-41.
Van den Broek 2003
  • Van den Broek N, Kulier R, Gülmezoglu AM, Villar J. Vitamin A supplementation during pregnancy (Cochrane Review). In: The Cochrane Library, 2, 2003. Oxford: Update Software. 10.1002/14651858.CD001996
Villar 1997
  • Villar J, Bergsjo P. Scientific basis for the content of routine antenatal care. I. Philosophy, recent studies and power to eliminate or alleviate adverse maternal outcomes. Acta Obstetricia et Gynecologica Scandinavica 1997;76(1):1-14.
Villar 2003
  • Villar J, Merialdi M, Gulmezoglu AM, Abalos E, Carroli G, Kulier R, et al. Nutritional interventions during pregnancy for the prevention or treatment of maternal morbidity and preterm delivery: an overview of randomized controlled trials. Journal of Nutrition 2003;5(Suppl 2):1606-25S.
Viteri 1998
  • Viteri FE. A new concept in the control of iron deficiency: community-based preventive supplementation of at-risk groups by the weekly intake of iron supplements. Biomedical and Environmental Sciences 1998;11(1):46-60.
WHO 1992
  • WHO. The prevalence of anaemia in women: a tabulation of available information. 2nd Edition. Geneva: World Health Organization, 1992.
WHO 2001
  • World Health Organization. Iron deficiency anemia assessment prevention and control: a guide for program managers. Geneva: World Health Organization, 2001:132.

References to other published versions of this review

  1. Top of page
  2. Abstract
  3. Background
  4. Objectives
  5. Criteria for considering studies for this review
  6. Search methods for identification of studies
  7. Methods of the review
  8. Potential conflict of interest
  9. Acknowledgements
  10. Sources of support
  11. Additional references
  12. References to other published versions of this review
CDSR 2003a
  • Mahomed K. Iron supplementation in Pregnancy (Cochrane Review). In: The Cochrane Library, 3, 2003. Oxford: Update Software.
CDSR 2003b
  • Mahomed K. Iron and folate supplementation in pregnancy (Cochrane Review). In: The Cochrane Library, 3, 2003. Oxford: Update Software. 10.1002/14651858.CD001135