SEARCH

SEARCH BY CITATION

References

  • Avrahami, S., R. Conrad, and G. Braker (2002), Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers, Appl. Environ. Microbiol., 68, 56855692, doi:10.1128/AEM.68.11.5685-5692.200.
  • Bai, E., B. Z. Houlton, and Y. P. Wang (2012), Isotopic identification of nitrogen hotspots across natural terrestrial ecosystems, Biogeosciences, 9, 32873304, doi:10.5194/bg-9-3287-2012.
  • Balslev, H., and B. Ollgaard (2002), Mapa de vegetación del sur de Ecuador, in Botánica Austroecuatoriana: Estudios sobre los Recursos Vegetales en las Provincias de El Oro, Loja y Zamora-Chinchipe, edited by M. Z. Aguirre et al., pp. 5164, Ed. Abya-Yala, Quito, Ecuador.
  • Barthlott, W., A. Hostert, G. Kier, W. Koper, H. Kreft, J. Mutke, M. D. Rafiqpoor, and J. H. Sommer (2007), Geographic patterns of vascular plant diversity at continental to global scales, Erdkunde, 61, 305315, doi:10.3112/erdkunde.2007.04.01.
  • Bernal, S., L. O. Hedin, G. E. Likens, S. Gerber, and D. C. Busco (2012), Complex response of the forest nitrogen cycle to climate change, Proc. Natl. Acad. Sci. U. S. A., 109, 34063411.
  • Booth, M. S., J. M. Stark, and E. B. Rastetter (2005), Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data, Ecol. Monogr., 75, 139157, doi:10.1890/04-0988.
  • Boy, J., R. Rollenbeck, C. Valarezo, and W. Wilcke (2008a), Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador, Global Biogeochem. Cycles, 22, GB4011, doi:10.1029/2007GB002960.
  • Boy, J., C. Valarezo, and W. Wilcke (2008b), Water flow paths in soil control element exports in an Andean tropical montane forest, Eur. J. Soil Sci., 59, 12091227, doi:10.1111/j.1365.2389.2008.01063.x.
  • Brookshire, E. N. J., L. O. Hedin, J. D. Newbold, D. M. Sigman, and J. K. Jackson (2012), Sustained losses of bioavailable nitrogen from montane tropical forests, Nat. Geosci., 5, 123126, doi:10.1038/NGEO1372.
  • Bruijnzeel, L. A., and L. S. Hamilton (2000), Decision Time for Cloud Forests, IHP-Unesco and WWF Int., Paris, Amsterdam.
  • Corre, M. D., E. Veldkamp, J. Arnold, and S. J. Wright (2010), Impact of elevated N input on soil N cycling and losses in old-growth lowland and montane forests in Panama, Ecology, 91, 17151929, doi:10.1890/09-0274.1.
  • Cusack, D. F., W. L. Silver, M. S. Torn, and W. H. McDowell (2011), Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests, Biogeochemistry, 104, 203225, doi:10.1007/s10533-010-9496-4.
  • Fleischbein, K., W. Wilcke, R. Goller, C. Valarezo, W. Zech, and K. Knoblich (2005), Rainfall interception in a lower montane forest in Ecuador: Effects of canopy properties, Hydrol. Processes, 19, doi:10.1002/hyp.55621355-1371.
  • Forti, M. C., and C. Neal (1992), Hydrochemical cycles in tropical rainforests: An overview with emphasis on central Amazonia, J. Hydrol., 134, 103115.
  • Galloway, J. N., et al. (2004), Nitrogen cycles: Past, present, and future, Biogeochemistry, 70, 153226, doi:10.1007/s10533-004-0370-0.
  • Galloway, J. N., A. R. Townsend, J. W. Erisman, M. Bekunda, Z. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger, and M. A. Sutton (2008), Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions, Science, 320, 889892, doi:10.1126/science.1136674.
  • Goller, R., W. Wilcke, M. J. Leng, H. J. Tobschall, K. Wagner, C. Valarezo, and W. Zech (2005), Tracing water paths through small catchments under a tropical montane rain forest in south Ecuador by an oxygen isotope approach, J. Hydrol., 308, 6780, doi:10.1016/j.jhydrol.2004.10.022.
  • Goller, R., W. Wilcke, K. Fleischbein, C. Valarezo, and W. Zech (2006), Dissolved inorganic nitrogen, phosphorus, and sulfur in the nutrient cycle of a montane forest in Ecuador, Biogeochemistry, 77, 5789, doi:10.1007/s10533-005-1061-1.
  • Helsel, D. R., and R. M. Hirsch (2002), Chapter A3: Statistical methods in water resources, in Techniques of Water-Resources Investigations, Book 4, U.S. Geol. Surv., Reston, Va.
  • Hietz, P., B. L. Turner, W. Wanek, A. Richter, C. A. Nock, and S. J. Wright (2011), Long-term change in the nitrogen cycle of tropical forests, Science, 334, 664666, doi:10.1126/science.1211979.
  • Hirsch, R. M., J. R. Slack, and R. A. Smitz (1982), Techniques of trend analysis for monthly water quality data, Water Resour. Res., 18, 170121.
  • Homeier, J. (2004), Baumdiversität, Waldstruktur und Wachstumsdynamik zweier tropischer Bergregenwälder in Ecuador und Costa Rica, PhD thesis, Univ. of Bielefeld, Bielefeld, Germany.
  • Homeier, J., et al. (2012), Tropical Andean forests are highly susceptible to nutrient inputs—Rapid effects of experimental N and P addition to an Ecuadorian montane forest, PLoS One, 7, e47128, doi:10.1371/journal.pone.004712.
  • Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437471.
  • Lara, L. B. L. S., P. Artaxo, L. A. Martinelli, R. L. Victoria, P. B. Camargo, A. Krusche, G. P. Ayers, E. S. B. Ferraz, and M. V. Ballester (2001), Chemical composition of rainwater and anthropogenic influences in the Piracicaba River Basin, southeast Brazil, Atmos. Environ., 35, 49374945, doi:10.1016/S1352-2310(01)00198-4.
  • Lohse, K., and P. Matson (2005), Consequences of nitrogen additions for soil processes and solution losses from wet tropical forests, Ecol. Appl., 15, 16291648, doi:10.1890/03-5421.
  • Martinson, G. O., M. D. Corre, and E. Veldkamp (2013), Responses of nitrous oxide fluxes and soil nitrogen cycling to nutrient additions in montane forests along an elevation gradient in southern Ecuador, Biogeochemistry, 112, 625636.
  • Matson, P. A., W. H. McDowell, A. R. Townsend, and P. M. Vitousek (1999), The globalization of N deposition: Ecosystem consequences in tropical environments, Biogeochemistry, 46, 6783, doi:10.1023/A:1006152112852.
  • Matzner, E., and K. J. Meiwes (1994), Long-term development of element fluxes with bulk precipitation and throughfall in two German forests, J. Environ. Qual., 23, 162166.
  • Matzner, E., T. Zuber, C. Alewell, G. Lischeid, and K. Moritz (2004), Chapter 14: Trends in deposition and canopy leaching of mineral elements as indiated by bulk deposition and throughfall measurements, in Biogeochemistry of Forested Catchments in a Changing Environment, Ecol. Stud. 17, edited by E. Matzner, pp. 233250, Springer, Berlin, Germany.
  • McDowell, W. H., and C. E. Asbury (1994), Export of carbon, nitrogen, and major ions from three tropical montane watersheds, Limnol. Oceanogr., 39, 111125.
  • McLeod, A. I. (2011), Kendall: Kendall rank correlation and Mann-Kendall trend test. R package version 2.2.
  • Michalzik, B., K. Kalbitz, J.-H. Park, S. Solinger, and E. Matzner (2001), Fluxes and concentrations of dissolved organic carbon and nitrogen—A synthesis for temperate forests, Biogeochemistry, 52, 173205, doi:10.1023/A:1006441620810.
  • Perakis, S. S., and L. O. Hedin (2002), Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds, Nature, 415, 416419, doi:10.1038/nature00959.
  • Peters, T., T. Drobnik, H. Meyer, M. Rankl, M. Richter, R. Rollenbeck, B. Thies, and J. Bendix (2013), Chapter 2: Environmental changes affecting the Andes of Ecuador, in Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador, Ecolo. Stud. 221, edited by J. Bendix et al., pp. 1929, Springer, Berlin, Germany.
  • Phoenix, G. K., et al. (2006), Atmospheric nitrogen deposition in world biodiversity hotspots: The need for a greater global perspective in assessing N deposition impacts, Global Change Biol., 12, 470476, doi:10.1111/j.1365-2486.2006.01104.x.
  • R Development Core Team (2011), R: A language and environment for statistical computing, R Found. for Stat. Comput., Vienna, Austria, ISBN 3-900051-07-0, http://www.R-project.org/.
  • Robertson, G. P. (1989), Nitrification and denitrification in humid tropical ecosystems: Potential controls on nitrogen retention, in Mineral Nutrients in Tropical Forest and Savanna Ecosystems, edited by J. Proctor, pp. 5569, Blackwell, Oxford, U. K.
  • Rollenbeck, R., P. Fabian, and J. Bendix (2008), Chapter 22: Temporal heterogeneities—Matter deposition from remote areas, in Gradients in a Tropical Mountain Ecosystem of Ecuador, Ecol. Stud. 198, edited by E. Beck et al., pp. 303309, Springer, Berlin, Germany.
  • Roman, L., F. N. Scatena, and L. A. Bruijnzeel (2010), Chapter 6: Global and local variations in tropical montane cloud forest soils, in Tropical Montane Cloud Forests, International Hydrology Series, edited by L. A. Bruijnzeel et al., pp. 7789, Cambridge Univ. Press, Cambridge, U. K.
  • Sala, O. E., et al. (2000), Global biodiversity scenarios for the year 2100, Science, 287, 17701774, doi:10.1126/science.287.5459.1770.
  • Schlesinger, W. H. (2009), On the fate of anthropogenic nitrogen, Proc. Natl. Acad. Sci. U. S. A., 106, 203208, doi:10.1073/pnas.0810193105.
  • Schrumpf, M., G. Guggenberger, C. Schubert, C. Valarezo, and W. Zech (2001), Tropical montane rain forest soils: Development and nutrient status along an altitudinal gradient in the south Ecuadorian Andes, Die Erde, 132, 4359.
  • Schuur, E. A. G., and P. A. Matson (2001), Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest, Oecologia, 128, 431442, doi:10.1007/s004420100671.
  • Schwarz, M. T., Y. Oelmann, and W. Wilcke (2011), Stable N isotope composition of nitrate reflects N transformations during the passage of water through a montane rain forest in Ecuador, Biogeochemistry, 102, 195208, doi:10.1007/s10533-010-9434-5.
  • Soethe, N., J. Lehmann, and C. Engels (2006), The vertical pattern of rooting and nutrient uptake at different altitudes of a south Ecuadorian montane forest, Plant Soil, 286, 287299.
  • Tanner, E. V. J., P. M. Vitousek, and E. Cuevas (1998), Experimental investigation of nutrient limitation of forest growth on wet tropical mountains, Ecology, 79, 1022, doi:10.2307/176860.
  • Townsend, A. R., C. C. Cleveland, B. Z. Houlton, C. B. Alden, and J. W. C. White (2011), Multi-element regulation of the tropical forest carbon cycle, Front. Ecol. Environ., 9, 917, doi:10.1890/100047.
  • Urrutia, R., and M. Vuille (2009), Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century, J. Geophys. Res., 114, D02108, doi:10.1029/2008JD011021.
  • Van Breemen, N. (2002), Natural organic tendency, Nature, 415, 381382, doi:10.1038/415381a.
  • Vuille, M., R. S. Bradley, M. Werner, and F. Keimig (2003), 20th century climate change in the tropical Andes: Observations and model results, Clim. Change, 59, 7599, doi:10.1023/A:1024406427519.
  • Wilcke, W., S. Yasin, C. Valarezo, and W. Zech (2001), Change in water quality during the passage through a tropical montane rain forest in Ecuador, Biogeochemistry, 55, 4572, doi:10.1023/A:1010631407270.
  • Wilcke, W., S. Yasin, U. Abramowski, C. Valarezo, and W. Zech (2002), Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador, Eur. J. Soil Sci., 53, 1527, doi:10.1046/j.1365-2389.2002.00411.x.
  • Wilcke, W., S. Yasin, K. Fleischbein, R. Goller, J. Boy, J. Knuth, C. Valarezo, and W. Zech (2008), Chapter 13, Nutrient status and fluxes at the field and catchment scale, in Gradients in a Tropical Mountain Ecosystem of Ecuador, Ecol. Stud. 198, edited by E. Beck et al., pp. 203215, Springer, Berlin, Germany.
  • Wilcke, W., J. Boy, U. Hamer, K. Potthast, R. Rollenbeck, and C. Valarezo (2013), Chapter 11: Current regulating and supporting services: Nutrient cycles, in Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador, Ecol. Stud. 221, edited by J. Bendix et al., pp. 141151, Springer, Berlin, Germany.
  • Wolf, K., E. Veldkamp, J. Homeier, and G. O. Martinson (2011), Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador, Global Biogeochem. Cycles, 25, GB4009, doi:10.1029/2010GB003876.
  • Wright, R. F., C. Alewell, J. M. Cullen, C. D. Evans, A. Marchetto, F. Moldan, A. Prechtel, and M. Rogora (2001), Trends in nitrogen deposition and leaching in acid-sensitive streams in Europe, Hydrol. Earth Syst. Sci., 5, 299310.
  • Wright, S. J., et al. (2011), Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest, Ecology, 92, 16161625.
  • Wullaert, H., T. Pohlert, J. Boy, C. Valarezo, and W. Wilcke (2009), Spatial throughfall heterogeneity in a montane rain forest in Ecuador: Extent, temporal stability and drivers, J. Hydrol., 377, 7179, doi:10.1016/j.jhydrol.2009.08.001.
  • Wullaert, H., J. Homeier, C. Valarezo, and W. Wilcke (2010), Response of the N and P cycles of an old-growth montane forest in Ecuador to experimental low-level N and P amendments, For. Ecol. Manage., 260, 14341445, doi:10.1016/j.foreco.2010.07.021.