SEARCH

SEARCH BY CITATION

References

  • Ares, A., and N. Peinemann (1992), Fine-root distribution of coniferous plantations in relation to site in southern Buenos Aires, Argentina, Can. J. For. Res., 22, 15751582.
  • Bauhus, J., and C. Messier (1999), Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada, Can. J. For. Res., 29, 13.
  • Bernier, P. Y., L. Guindon, W. A. Kurz, and G. Stinson (2010), Reconstructing and modelling 71 years of forest growth in a Canadian boreal landscape: A test of the CBM-CFS3 carbon accounting model, Can. J. For. Res., 40, 109118.
  • Bloomfield, J., K. A. Vogt, and P. M. Wargo (1996), Tree root turnover and senescence, in Plant Roots: The Hidden Half, edited by W. Yoav et al., pp. 1136, Marcel Dekker, New York.
  • Borken, W., G. Kossmann, and E. Matzner (2007), Biomass, morphology and nutrient contents of fine roots in four Norway spruce stands, Plant Soil, 292, 7993.
  • Brassard, B. W., H. Y. H. Chen, and Y. Bergeron (2009), Influence of environmental variability on root dynamics in northern forests, Crit. Rev. Plant Sci., 28, 179197.
  • Cairns, M. A., S. Brown, E. H. Helmer, and G. A. Baumgardner (1997), Root biomass allocation in the world's upland forests, Oecologia, 111, 111.
  • Canadell, J. G., C. Le Quéré, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. A. Houghton, and G. Marland (2007), Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks, Proc. Natl. Acad. Sci. U. S. A., 104, 18,86618,870.
  • Canadian Council of Forest Ministers (2009), National Forestry Database, in Canadian Council of Foresty Ministers, http://nfdp.ccfm.org.
  • Chapin, F. S. III, J. McFarland, D. McGuire, E. Euskirchen, R. Ruess, and K. Kielland (2009), The changing global carbon cycle: Linking plant-soil carbon dynamics to global consequences, J. Ecol., 97, 840850.
  • Chen, J., W. Chen, J. Liu, J. Cihlar, and S. Gray (2000a), Annual carbon balance of Canada's forests during 1895–1996, Global Biogeochem. Cycle, 14, 839849.
  • Chen, W., J. Chen, J. Liu, and J. Cihlar (2000b), Approaches for reducing uncertainties in regional forest carbon balance, Global Biogeochem. Cycle, 14, 827838.
  • Chen, H., M. E. Harmon, and R. P. Griffiths (2001), Decomposition and nitrogen release from decomposing woody roots in coniferous forests of the Pacific Northwest: A chronosequence approach, Can. J. For. Res., 31, 246260.
  • Cruickshank, M. G., D. J. Morrison, and A. Lalumière (2011), Site, plot, and individual tree yield reduction of interior Douglas-fir associated with non-lethal infection by Armillaria root disease in southern British Columbia, For. Ecol. Manage., 261, 297307.
  • Currie, W. S., M. E. Harmon, I. C. Burke, S. C. Hart, W. J. Parton, and W. Silver (2010), Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale, Global Change Biol., 16, 17441761.
  • Dornbush, M. E., T. M. Isenhart, and J. W. Raich (2002), Quantifying fine-root decomposition: An alternative to buried litterbags, Ecology, 83, 29852990.
  • Ecological Land Classification Group (2005), Ontario Terrestrial Assessment Program. Ontario Ministry of Natural Resources, Sault Ste. Marie, Ont.
  • Eissenstat, D. M., and A. Volder (2005), The efficiency of nutrient acquisition over the life of a root, in Nutrient Acquisition by Plants, edited by H. Bassirirad, pp. 347 , Springer, Berlin, Heidelberg.
  • Environment Canada (2009), National Inventory Report: 1990–2007, Greenhouse Gas Sources and Sinks in Canada, edited by Greenhouse Gas Division, pp 661, Ottawa, Ont.
  • Finér, L., and J. Laine (1998), Root dynamics at drained peatland sites of different fertility in southern Finland, Plant Soil, 201, 2736.
  • Finér, L., C. Messier, and L. De Grandpre (1997), Fine-root dynamics in mixed boreal conifer - broad-leafed forest stands at different successional stages after fire, Can. J. For. Res., 27, 304314.
  • Fraser, R. H., Z. Li, and J. Cihlar (2000), Hotspot and NDVI differencing synergy (HANDS): A new technique for burned area mapping over boreal forest, Remote Sens. Environ., 74, 362376.
  • Frey, B. R., V. J. Lieffers, S. M. Landhausser, P. G. Comeau, and K. J. Greenway (2003), An analysis of sucker regeneration of trembling aspen, Can. J. For. Res., 33, 11691179.
  • Gale, M. R., and D. F. Grigal (1987), Vertical root distributions of northern tree species in relation to successional status, Can. J. For. Res., 17, 829834.
  • Geoconnections (2004), Insect monitoring datasets for 1980–2000. Available at: http://geodiscover.cgdi.ca (accessed November 2004).
  • Giardina, C. P., M. D. Coleman, D. Binkley, J. E. Hancock, J. S. King, E. A. Lilleskov, W. M. Loya, K. S. Pregitzer, M. G. Ryan, and C. C. Trettin (2005), The response of belowground carbon allocation in forests to global change, in Tree Species Effects on Soils: Implications for Global Change, edited by D. Binkley et al., pp. 358, Kluwer Academic Publishers, Dordrecht, Netherlands.
  • Gill, R. A., and R. B. Jackson (2000), Global patterns of root turnover for terrestrial ecosystems, New Phytol., 147, 1331.
  • Gill, R. A., and R. B. Jackson (2003), Global Distribution of Root Turnover in Terrestrial Ecosystems, pp. 3 , National Laboratory Distributed Active Archive Center, Oak Ridge, Tenn.
  • González-Molina, L., J. D. Etchevers-Barra, F. Paz-Pellat, H. Díaz-Solis, M. H. Fuentes-Ponce, S. Covaleda-Ocón, and M. Pando-Moreno (2011), Performance of the RothC-26.3 model in short-term experiments in Mexican sites and systems, J. Agric. Sci., 149, 10.
  • Gower, S. T., J. G. Vogel, J. M. Norman, C. J. Kucharik, S. J. Steele, and T. K. Stow (1997), Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada, J. Geophys. Res., 102, 29,02929,041.
  • Gower, S. T., O. Krankina, R. J. Olson, M. Apps, S. Linder, and C. Wang (2001), Net primary production and carbon allocation patterns of boreal forest ecosystems, Ecol. Appl., 11, 13951411.
  • Green, C., B. Tobin, M. O'Shea, E. Farrell, and K. Byrne (2005), Above- and belowground biomass measurements in an unthinned stand of Sitka spruce ( Picea sitchensis (Bong) Carr.), Eur. J. For. Res., 126, 179188.
  • de Groot, W. J., et al. (2007), Estimating direct carbon emissions from Canadian wildland fires, Int. J. Wildland Fire, 16, 593606.
  • Heath, J., E. Ayres, M. Possell, R. D. Bardgett, H. I. J. Black, H. Grant, P. Ineson, and G. Kerstiens (2005), Rising atmospheric CO2 reduces sequestration of root-derived soil carbon, Science, 309, 17111713.
  • Hendricks, J. J., R. L. Hendrick, C. A. Wilson, R. J. Mitchell, S. D. Pecot, and D. Guo (2006), Assessing the patterns and controls of fine root dynamics: An empirical test and methodological review, J. Ecol., 94, 4057.
  • Hogg, E. H., J. P. Brandt, and M. Michaelian (2008), Impacts of a regional drought on the productivity, dieback, and biomass of western Canadian aspen forests, Can. J. For. Res., 38, 13731384.
  • Hunt, E. R., M. B. Lavigne, and S. E. Franklin (1999), Factors controlling the decline of net primary production with stand age for balsam fir in Newfoundland assessed using an ecosystem simulation model, Ecol. Model., 122, 151164.
  • Intergovernmental Panel on Climate Change (2003), Good Practice Guidance for Land Use, Land-Use Change and Forestry, edited by J. Penman et al., pp. 632, Institute for Global Environmental Strategies, Hayama, Japan.
  • Iversen, C. M. (2010), Digging deeper: Fine-root responses to rising atmospheric CO2 concentration in forested ecosystems, New Phytol., 186, 346357.
  • Jackson, R. B., H. A. Mooney, and E. D. Schulze (1997), A global budget for fine root biomass, surface area, and nutrient contents, Proc. Natl. Acad. Sci. U. S. A., 94, 73627366.
  • Jackson, R. B., C. W. Cook, J. S. Pippen, and S. M. Palmer (2009), Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest, Ecology, 90, 33523366.
  • Jones, D. L., A. Hodge, and Y. Kuzyakov (2004), Plant and mycorrhizal regulation of rhizodeposition, New Phytol., 163, 459480.
  • Kang, S., J. S. Kimball, and S. W. Running (2006), Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration, Sci. Total Environ., 362, 85102.
  • Kull, S. J., G. J. Rampley, S. Morken, J. Metsaranta, E. T. Neilson, and W. A. Kurz (2011), Operational-scale Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) Version 1.2: User's Guide, Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB.
  • Kurz, W. A., and M. J. Apps (1999), A 70-Year retrospective analysis of carbon fluxes in the Canadian forest sector, Ecol. Appl., 9(2), 526547.
  • Kurz, W. A., and M. J. Apps (2006), Developing Canada's national forest carbon monitoring, accounting and reporting system to meet the reporting requirements of the Kyoto Protocol, Miti. Adapt. Strat. Global Change, 11, 3343.
  • Kurz, W. A., and J. P. Kimmins (1987), Analysis of some sources of error in methods used to determine fine root production in forest ecosystems: A simulation approach, Can. J. For. Res., 17, 909912.
  • Kurz, W. A., S. J. Beukema, and M. J. Apps (1996), Estimation of root biomass and dynamics for the carbon budget model of the Canadian forest sector, Can. J. For. Res., 26, 19731979.
  • Kurz, W. A., M. Apps, E. Banfield, and G. Stinson (2002), Forest carbon accounting at the operational scale, For. Chron., 78, 672679.
  • Kurz, W. A., C. C. Dymond, G. Stinson, G. J. Rampley, E. T. Neilson, A. L. Carroll, T. Ebata, and L. Safranyik (2008), Mountain pine beetle and forest carbon feedback to climate change, Nature, 452(7190), 987990.
  • Kurz, W. A., et al. (2009), CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards, Ecol. Model., 220, 480504.
  • Lamlom, S. H., and R. A. Savidge (2003), A reassessment of Carbon content in wood: Variation within and between 41 North American species, Biomass Bioenergy, 25(4), 381388.
  • Lavigne, M. B., and M. J. Krasowski (2007), Estimating coarse root biomass of balsam fir, Can. J. For. Res., 37, 991998.
  • Li, Z., M. J. Apps, E. Banfield, and W. A. Kurz (2002), Estimating net primary production of forests in the Canadian Prairie Provinces using an inventory-based carbon budget model, Can. J. For. Res., 32, 161169.
  • Li, Z., W. A. Kurz, M. J. Apps, and S. J. Beukema (2003), Belowground biomass dynamics in the Carbon Budget Model of the Canadian Forest Sector: Recent improvements and implications for the estimation of NPP and NEP, Can. J. For. Res., 33, 126136.
  • Ludovici, K. H., S. J. Zarnoch, and D. D. Richter (2002), Modeling in-situ pine root decomposition using data from a 60-year chronosequence, Can. J. For. Res., 32, 16751684.
  • Luyssaert, S., et al. (2007), CO2 balance of boreal, temperate, and tropical forests derived from a global database, Global Change Biol., 13, 25092537.
  • Matthews, G. (1993), The carbon content of trees, Rep. Technical Paper 4, 21 pp., Forestry Commission, Surrey, U. K.
  • Mokany, K., R. J. Raison, and A. S. Prokushkin (2006), Critical analysis of root: Shoot ratios in terrestrial biomes, Global Change Biol., 12, 8496.
  • Newton, P. F. (2006), Forest production model for upland black spruce stands—Optimal site occupancy levels for maximizing net production, Ecol. Model., 190, 190204.
  • Norby, R. J., J. Ledford, C. D. Reilly, N. E. Miller, and E. G. O'Neill (2004), Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment, Proc. Natl. Acad. Sci. U. S. A., 101, 96899693.
  • Nygren, P., M. Lu, and H. Ozier-Lafontaine (2009), Effects of turnover and internal variability of tree root systems on modelling coarse root architecture: Comparing simulations for young Populus deltoides with field data, Can. J. For. Res., 39, 97108.
  • Olesinski, J., M. B. Lavigne, J. A. Kershaw Jr, and M. J. Krasowski (2012a), Fine-root dynamics change during stand development and in response to thinning in balsam fir (Abies balsamea L. Mill.) forests, For. Ecol. Manag., 286(0), 4858.
  • Olesinski, J., M. J. Krasowski, M. B. Lavigne, J. A. Kershaw, and P. Y. Bernier (2012b), Fine root production varies with climate in balsam fir (Abies balsamea), Can. J. For. Res., 42(2), 364374.
  • Pan, Y., et al. (2011), A large and persistent carbon sink in the world's forests, Science, 333, 988993.
  • Peltoniemi, M., T. Palosuo, S. Monni, and R. Makipaa (2006), Factors affecting the uncertainty of sinks and stocks of carbon in Finnish forests soils and vegetation, For. Ecol. Manage., 232, 7585.
  • Pinno, B. D., S. D. Wilson, D. F. Steinaker, K. C. J. Van Rees, and S. A. McDonald (2010), Fine root dynamics of trembling aspen in boreal forest and aspen parkland in central Canada, Ann. For. Sci., 67, 710.
  • Power, K., and M. Gillis (2006), Canada's Forest Inventory 2001, in Inf. Rep. BC-X-408, pp. 128, Natural Resources Canada, Canadian Forest Service, Victoria, BC.
  • Pritchett, W. L. (1986), Forest Soils, Wiley, New York.
  • Rasse, D. P., L. François, M. Aubinet, A. S. Kowalski, I. Vande Walle, E. Laitat, and J.-C. Gérard (2001), Modelling short-term CO2 fluxes and long-term tree growth in temperate forests with ASPECTS, Ecol. Model., 141, 3552.
  • Riley, W. J., J. B. Gaudinski, M. S. Torn, J. D. Joslin, and P. J. Hanson (2009), Fine-root mortality rates in a temperate forest: Estimates using radiocarbon data and numerical modeling, New Phytol., 184, 387398.
  • Ruark, G. A., and J. G. Bockheim (1987), Belowground biomass of 10-, 20-, and 32-year-old Populus tremuloides in Wisconsin, Pedobiologia, 30, 207217.
  • Ruess, R. W., R. L. Hendrick, A. J. Burton, K. S. Pregitzer, B. Sveinbjornssön, M. F. Allen, and G. E. Maurer (2003), Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska, Ecol. Monogr., 73, 643662.
  • Running, S. W., R. R. Nemani, F. A. Heinsch, M. Zhao, M. Reeves, and H. Hashimoto (2004), A continuous satellite-derived measure of global terrestrial primary production, BioScience, 54, 547560.
  • SAS Inc. (2008), SAS/STAT 9.2 user's guide. SAS Institute Inc., Cary, NC.
  • Setälä, H., V. G. Marshall, and J. A. Trofymow (1996), Influence of body size of soil fauna on litter decomposition and 15N uptake by poplar in a pot trial, Soil Biol. Biochem., 28, 16611675.
  • Shaw, C. H., J. S. Bhatti, and K. J. Sabourin (2005), An ecosystem carbon database for Canadian forests, in Inf. Rep. NOR-X-403, pp. 113 , Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB.
  • Simpson, R., and D. Coy (1999), An ecological atlas of forest insect defoliation in Canada: 1980–1996, in Inf. Rep. M-X-206E, pp. 15, Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, Fredricton, NB.
  • Smyth, C., and W. A. Kurz (2013), Forest soil decomposition and its contribution to heterotrophic respiration: A case study based on Canada, Soil Biol. Biochem., 67, 155165, in press.
  • Smyth, C. E., W. A. Kurz, and J. A. Trofymow (2011), Including the effects of water stress on decomposition in the Carbon Budget Model of the Canadian Forest Sector CBM-CFS3, Ecol. Model., 222, 10801091.
  • Steele, S. J., S. T. Gower, J. G. Vogel, and J. M. Norman (1997), Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada, Tree Physiol., 17, 577587.
  • Stinson, G., et al. (2011), An inventory-based analysis of Canada's managed forest carbon dynamics, 1990 to 2008, Global Change Biol., 17, 22272244.
  • Stocks, B. J., et al. (2002), Large forest fires in Canada, 1959–1997, J. Geophys. Res., 108(D1), FFR5.1FFR5.12, doi:10.1029/2001JD000484.
  • Stover, D. B., F. P. Day, J. R. Butnor, and B. G. Drake (2007), Effect of elevated CO2 on coarse-root biomass in Florida scrub detected by ground-penetrating radar, Ecology, 88, 13281334.
  • Strand, A. E., S. G. Pritchard, M. L. McCormack, M. A. Davis, and R. Oren (2008), Irreconcilable differences: Fine-root life spans and soil carbon persistence, Science, 319, 456458.
  • Thomas, S. C., and A. R. Martin (2012), Carbon content of tree tissues: A synthesis, Forests, 3(2), 332352.
  • Trofymow, J. A., and A. Lalumière (2011), Fine root density distribution and biomass in second- and third-growth Douglas-fir stands on Vancouver Island, British Columbia Rep., Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, BC.
  • Trofymow, J. A., G. Stinson, and W. A. Kurz (2008), Derivation of a spatially explicit 86-year retrospective carbon budget for a landscape undergoing conversion from old-growth to managed forests on Vancouver Island, BC, For. Ecol. Manage., 256, 16771691.
  • Trueman, R. J., and M. A. Gonzalez-Meler (2005), Accelerated belowground C cycling in a managed agriforest ecosystem exposed to elevated carbon dioxide concentrations, Global Change Biol., 11, 12581271.
  • Vogt, K. A., C. C. Grier, and D. J. Vogt (1986), Production, turnover and nutrient dynamics of above and belowground detritus of world forests, in Advances in Ecological Research, vol. 15, pp. 303377, Academic Press, Orlando, Fla.
  • Vogt, K. A., J. V. Daniel, A. P. Peter, B. Paul, O. H. Jennifer, and A. Heidi (1996), Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species, Plant Soil, 187, 159219.
  • van der Werf, G. R., D. C. Morton, R. S. DeFries, J. G. J. Olivier, P. S. Kasibhatla, R. B. Jackson, G. J. Collatz, and J. T. Randerson (2009), CO2 emissions from forest loss, Nat. Geosci., 2(11), 737738.
  • White, T., N. Luckai, G. R. Larocque, W. A. Kurz, and C. Smyth (2008), A practical approach for assessing the sensitivity of the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), Ecol. Model., 219, 373382.
  • Yuan, Z. Y., and H. Y. H. Chen (2010), Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature review and meta-analyses, Crit. Rev. Plant Sci., 29, 204221.
  • Zheng, D. L., S. Prince, and R. Wright (2003), Terrestrial net primary production estimates for 0.5 degree grid cells from field observations—A contribution to global biogeochemical modeling, Global Change Biol., 9, 4664.