SEARCH

SEARCH BY CITATION

References

  • Abadie, S. D., S. D. Morichon, S. Grilli, and S. Glockner (2008), VOF/Navier-Stokes numerical modeling of surface waves generated by subaerial landslides, La Houille Blanche, 1, 2126.
  • Abadie, S. D., S. D. Morichon, S. Grilli, and S. Glockner (2010), Numerical simulation of waves generated by landslides using a multiple-fluid Navier-Stokes model, Coastal Eng., 57, 779794.
  • Assier-Rzadkiewicz, S., C. Mariotti, and P. Heinrich (1977), Numerical simulation of submarine landslides and their hydraulic effects, J. Waterw. Port Coastal Ocean Eng., 123(4), 149158.
  • Campbell, C. S., P. W. Cleary, and M. Hopkins (1995), Large-scale landslide simulations: Global deformation, velocities and basal friction, J. Geophys. Res., 100(B5), 82678283, doi:10.1029/94JB00937.
  • Casulli, V., and G. S. Stelling (1998), Numerical simulation of 3D quasihydrostatic, free-surface flows, J. Hydraul. Eng., 124, 678686.
  • Chandrasekhar, S. (1961), Hydrodynamic and Hydromagnetic Stability, Oxford Univ. Press, London.
  • Chorin, A. J. (1968), Numerical solution of the Navier-Stokes equations, Math. Comput., 22, 745762.
  • Clague, J. J., A. Munro, and T. S. Murty (2003), Tsunami hazard and risk in Canada, Nat. Hazards, 28, 433461.
  • Cranford, G. (2000), Tidal Wave, A List of Victims and Survivors, Newfoundland, 1929, pp. 264, Flanker Press, St. Johns, Newfoundland.
  • Dellinger, J. A., and J. A. Blum (2009), Insights into the mechanism of the Northern Gulf of Mexico MS 5.3 “Green Canyon event” of 10 February 2006, AGU Fall Meeting Abstracts, p. A1484.
  • Didenkulova, I., I. Nikolkina, E. Pelinovsky, and N. Zahibo (2010), Tsunami waves generated by submarine landslides of variable volume: analytical solutions for a basin of variable depth, Nat. Hazards Earth Syst. Sci., 10, 24072419.
  • Dunbar, P. K., and C. S. Weaver (2008), U.S. states and territories national tsunami hazard assessment: Historic record and sources for waves, Tech. Rep. to National Tsunami Hazard Mitigation Program, NGDC, U.S. Geol. Surv.
  • Enet, F., and S. T. Grilli (2005), Laboratory experiments for tsunamis generated by underwater landslides: Comparison with numerical modeling, in Proceedings of the 5th International on Ocean Wave Measurement and Analysis, IAHR Publ. paper 88, p. 10.
  • Enet, F., and S. T. Grilli (2007), Experimental study of tsunami generation by threedimensional rigid underwater landslides, J. Waterw. Port Coastal Ocean Eng., 133(6), 442454.
  • Enet, F., S. T. Grilli, and P. Watts (2003), Laboratory experiments for tsunamis generated by underwater landslides: Comparison with numerical modeling, in Proceedings of the 13th International Offshore and Polar Engineering Conference, ISOPE03, pp. 372379, Honolulu, Hawaii.
  • Fine, I. V., A. B. Rabinovich, E. A. Kulikov, R. E. Thomson, and B. D. Bornhold (1998), Numerical modelling of landslide generated tsunamis with application to the Skagway Harbor tsunami of November 3, 1994, paper presented at the International Conference on Tsunamis, Paris, pp. 211223.
  • Fritz, H. M. (2002), Initial phase of landslide generated impulse waves, PhD thesis Nr. 14'871, Swiss Federal Inst. of Technology (ETH), Zürich.
  • Fritz, H. M., W. H. Hager, and H.-E. Minor (2003a), Landslide generated impulse waves: part 1: Instantaneous flow fields, Exp. Fluids, 35, 505519.
  • Fritz, H. M., W. H. Hager, and H.-E. Minor (2003b), Landslide generated impulse waves: part 2: Hydrodynamic impact craters, Exp. Fluids, 35, 520532.
  • Fritz, H. M., W. H. Hager, and H.-E. Minor (2004), Near field characteristics of landslide generated impulse waves, J. Waterw. Port Coastal Ocean Eng., 139(6), 287302.
  • Fritz, H. M., F. Mohammed, and J. Yoo (2009), Lituya Bay landslide impact generated mega-tsunami 50th anniversary, Pure Appl. Geophys., 166(1–2), 153175, doi:10.1007/s00024-008-0435-4.
  • Fritz, H. M., J. V. Hillaire, E. Molière, Y. Wei, and F. Mohammed (2013), Twin tsunamis triggered by the 12 January 2010 Haiti earthquake, Pure Appl. Geophys., 170(9–10), 14631474, doi:10.1007/s00024-012-0479-3.
  • Geist, E. L. (2000), Origin of the 17 July 1998 Papua New Guinea Tsunami: Earthquake or landslide?, Seismol. Res. Lett., 71, 344351.
  • Gelfenbaum, G., and J. D. Smith (1986), Experimental evaluation of a generalized suspended sediment transport theory, in Shelf Sands and Sandstones. Memoir, edited by R. J. Knight and J. R. McLean, vol. 11, Can. Soc. of Pet. Geol., pp. 133144.
  • Gisler, G. (2006), SAGE calculations of the tsunami threat from La Palma, Sci. Tsunami Hazards, 24(4), 288301.
  • Gisler, G., R. Weaver, C. Mader, and M. Gittings (2004), Two- and three-dimensional asteroid impact simulations, Comput. Sci. Eng., 6(3), 4655, doi:10.1109/MCISE.2004.1289308.
  • Gittings, M. L. (1992), SAIC's adaptive grid eulerian code, Defense Nuclear Agency Numerical Method Symposium, April 28-30, SRI International, Menlo Park, Calif.
  • Grilli, S. T., and P. Watts (1999), Modelling of waves generated by a moving submerged body: Applications to underwater landslides, Eng. Anal. Boundary Elements, 23(8), 645656.
  • Grilli, S. T., and P. Watts (2005), Tsunami generation by submarine mass failure part I: Modeling, experimental validation, and sensitivity analyses, J. Waterw. Port Coastal Ocean Eng., 131(6), 283297.
  • Grilli, S. T., S. Vogelmann, and P. Watts (2002), Development of a 3D numerical wave tank for modelling tsunami generation by underwater landslides, Eng. Anal. Boundary Elements, 26(4), 301313.
  • Grilli, S. T., O. S. Taylor, D. P. Baxter, and S. Maretzki (2009), A probabilistic approach for determining submarine landslide tsunami hazard along the upper east coast of the united states, Mar. Geol., 264, 7497.
  • Grilli, S. T., F. Dias, P. Guyenn, C. Fochesato, and F. Enet (2010), Progress in fully nonlinear potential flow modeling of 3D extreme ocean waves in Advances in Numerical Simulation of Nonlinear Water Waves (Series in Advances in Coastal and Ocean Engineering, Vol. 11, ISBN: 978–981-283–649-6), p. 55, World Scientific, Singapore.
  • Hampton, M., and J. Locat (1996), Submarine landslides, Rev. Geophys., 34, 3359.
  • Haugen, K. B., F. Lovholt, and C. B. Harbitz (2005), Fundamental mechanisms for tsunami generation by submarine mass flows in idealized geometries, Mar. Pet. Geol., 22, 209217.
  • Heinrich, P. (1992), Nonlinear water waves generated by submarine and aerial landslides, J. Waterw. Port Coastal Ocean Eng., 118(3), 249266.
  • Heinrich, P., A. Piatanesi, E. A. Okal, and H. Hébert (2000), Near-field modeling of the July 17, 1998 tsunami in Papua New Guinea, Geophys. Res. Lett., 27, 30373040.
  • Heinrich, P., A. Piatanesi, and H. Hébert (2001), Numerical modeling of tsunami generation and propagation from submarine slumps: The 1998 Papua New Guinea event, Geophys. J. Int., 145, 97111.
  • Heller, V. (2007), Landslide generated impulse waves-prediction of near field characteristics, PhD thesis, Thesis dissertation presented to ETH Zurich, Zurich.
  • Heller, V., and W. H. Hager (2010), Impulse product parameter in landslide generated impulse waves, J. Waterw. Port Coastal Ocean Eng., 136(3), 145155.
  • Hirt, C. W., and B. D. Nichols (1981), Volume of fluid method for the dynamics of free boundaries, J. Comput. Phys., 39, 201225.
  • Horrillo, J. (2006), Numerical method for tsunami calculation using full Navier-Stokes equations and volume of fluid method, PhD thesis, presented to the University of Alaska Fairbanks, 98 pp.
  • Horrillo, J. J., A. L. Wood, C. Williams, A. Parambath, and G.-B. Kim (2010), Construction of tsunami inundation maps in the Gulf of Mexico, Tech. Rep. Award NA09NWS4670006), National Tsunami Hazard Mitigation Program (NTHMP), Natl. Weather Serv. Prog. Office, NOAA.
  • Huber, A. (1980), Reservoir impulse waves caused by rockfall, Tech. Rep. Mitteilung 47, Lab. of Hydraul. Hydrol. and Glaciol., Swiss Federal Inst. of Technol.
  • Huber, A. (1982), Impulse waves in Swiss lakes as a results of rock avalanches and bank slides. Experimental results for the prediction of the characteristic numbers of these waves, Comminsion Internationale des Grands Barrages, 14 Congres des Grand Barrages, Rio de Janeiro, pp. 311390.
  • Hunt, B. (1988), Water waves generated by distant landslides, J. Hydraul. Res., 26, 307322.
  • Imamura, F., and K. Hashi (2002), Re-examination of the tsunami source of the 1998 Papua New Guinea Earthquake Tsunami, Pure Appl. Geophys., 160, 20712086.
  • Imamura, F., and M. A. Imteaz (1995), Long waves in two-layers: Governing equations and numerical model, Tsunami Hazards, 14, 1328.
  • Imteaz, M. A., and F. Imamura (2001), A non-linear numerical model for stratified tsunami waves and its application, Sci. Tsunami Hazards, 19, 150159.
  • Jiang, L., and P. H. Leblond (1992), The coupling of a submarine slide and the surface wave it generates, J. Geophys. Res., 97(12), 731744.
  • Jiang, L., and P. H. Leblond (1993), Numerical modeling of an underwater bingham plastic mudslide and the wave which it generates, J. Geophys. Res., 98, 304317.
  • Kawata, Y., et al. (1999), Tsunami in Papua New Guinea was as intense as first thought, Eos Trans. AGU, 80(101), 104105.
  • Kikuchi, M., Y. Yamanaka, Y. Abe, Y. Morita, and S. Watada (1998), Source rupture process of the Papua New Guinea Earthquake of July 17, 1998 inferred from teleseismic body waves, Eos Trans. AGU, 79(45), F573.
  • Kowalik, Z., J. Horrillo, and E. Kornkven (2005a), Tsunami generation and runup due to 2D landslide, in Advanced Numerical Models for Simulating Tsunami waves and Runup, edited by H. Yeh, P. Liu, and C. Synolakis, pp. 269272, World Scientific, Singapore.
  • Kowalik, Z., J. Horrillo, and E. Kornkven (2005b), Tsunami runup onto a plane beach, in Advanced Numerical Models for Simulating Tsunami waves and Runup, edited by H. Yeh, P. Liu, and C. Synolakis, pp. 231236, World Scientific, Singapore.
  • Law, L., and A. Brebner (1968), On water waves generated by landslide, Paper 2561 3rd Australas. Conference on Hydraulics and Fluid Mechanics, pp. 155159, Inst. of Eng., Sydney, Australia.
  • Liu, P. L.-F., P. Lynett, and C. E. Synolakis (2003), Analytical solution for force long waves on a sloping beach, J. Fluid Mech., 478, 101109.
  • Liu, P. L.-F., T. R. Wu, F. Raichlen, C. E. Synolakis, and J. C. Borrero (2005), Run-up and rundown generated by three-dimensional sliding masses, J. Fluid Mech., 536, 107144.
  • Locat, J., and H. J. Lee (2002), Submarine landslides: Advances and challenges, Can. Geotech. J., 39, 193212.
  • Lynett, P., and P. L.-F. Liu (2005), A numerical study of the run-up generated by three dimensional landslides, J. Geophys. Res., 110, C03006, doi:10.1029/2004JC002,443.
  • Mader, C., and M. L. Gittings (2002), Modeling the 1958 Lituya Bay mega-tsunami, II, Sci. Tsunami Hazards, 20(5), 241250.
  • Mader, C., and M. L. Gittings (2003), Dynamics of water cavity generation, Sci. Tsunami Hazards, 21(2), 91101.
  • Mason, D., C. Habitz, R. Wynn, G. Pederson, and F. Lovholt (2006), Submarine landslides: Processes, triggers and hazard protection, Philos. Trans. R. Soc. A, 364, 20092039.
  • Mohammed, F., and H. M. Fritz (2012), Physical modeling of tsunamis generated by three-dimensional deformable granular landslides, J. Geophys. Res., 117, C11015, doi:10.1029/2011JC007850.
  • Nichols, B. D., C. W. Hirt, and R. S. Hotchkiss (1980), SOLA-VOF: A solution algorithm for transient fluid flow with multiple free boundaries, Tech. Rep. LA-8355, Los Alamos Natl. Lab.
  • Noda, E. K. (1970), Water waves generated by landslides, J. Waterw. Harbors Coastal Eng. Div. Am. Soc. Civ. Eng., 96(WW4), 835855.
  • Novikova, L. E., and L. A. Ostrovsky (1978), Excitation of tsunami waves by a travelling displacement of the ocean bottom, Mar. Geod., 2, 365380.
  • National Tsunami Hazard Mitigation Program (NTHMP) (2012), Proceedings and Results of the 2011 NTHMP Model Benchmarking Workshop, NOAA Spec. Rep., p. 436, U.S. Dep. of Comm./NOAA/NTHMP, Boulder, Colo.
  • Okal, E. O., and C. E. Synolakis (2003), Theoretical comparisons of tsunamis from dislocations and slides, Pure Appl. Geophys., 160, 21772188.
  • Pelinovsky, E., and A. Poplavsky (1997), Simplified model of tsunami generation by submarine landslides, Phys. Chem. Earth, 21, 1317.
  • Pelinovsky, E. N. (2003), Analytical models of tsunami generation by submarine landslides, in NATO Science Series, edited by A. Yalciner et al., pp. 111128, Earth Environ. Sci., 21, Kluwer, Dordrecht/Boston.
  • Raichlen, F., and C. E. Synolakis (2003), Runup from three dimensional sliding mass, in Proceedings of the Long Wave Symposium 2003, edited by C. Briggs and M. Coutitas, pp. 247256, XXX IAHR Congress Proc.
  • Satake, K., and Y. Tanioka (2003), The July 1998 Papua New Guinea Earthquake: Mechanism and quantification of unusual tsunami generation, Pure Appl. Geophys., 160, 20872118.
  • Shuto, N. (1991), Numerical simulation of tsunamis, in Tsunami Hazard, edited by E. Bernard, pp. 171191, Kluwer Acad., Dordrecht, Netherlands.
  • Sweet, S., E. Silver, H. Davies, T. Matsumoto, P. Watts, and C. Synolakis (1999), Seismic reflection images of the source region of the Papua New Guinea Tsunami of July 17, 1998, Eos Trans. AGU, 80, F750.
  • Synolakis, C. E., and F. Raichlen (2003), Waves and Runup generated by a three-dimensional sliding mass, in Submarine Mass Movements and Their Consequences, Advances in Natural Hazards, edited by J. Locat and J. Mienert, pp. 113120, Kluwer Acad., Dordrecht.
  • Synolakis, C. E., J.-P. Bardet, J. Borrero, H. Davies, E. Okal, E. Silver, S. Sweet, and D. R. Tappin (2002), Slump origin of the 1998 Papua New Guinea tsunami, Proc. R. Soc. London, Ser. A, 458, 763789.
  • Synolakis, C. E., E. N. Bernard, V. V. Titov, U. Kanoglu, and F. I. Gonzlez (2007), OAR PMEL-135 standards, criteria, and procedures for NOAA evaluation of tsunami numerical models, Tech. Rep. NOAA Tech. Memo. OAR PMEL-135, NOAA/Pac. Mar. Environ. Lab., Seattle, Wash.
  • Tanioka, Y. (1999), Analysis of the far-field tsunamis generated by the 1998 Papua New Guinea earthquake, Geophys. Res. Lett., 26, 33933396.
  • Tanioka, Y., and L. J. Ruff (1998), The 1998 Papua New Guinea earthquake. An outer rise event?, Eos Trans. AGU, 79, F572 (abstract).
  • Tappin, D. R., P. Watts, G. M. McMurtry, Y. Lafoy, and T. Matsumoto (2001), The Sissano, Papua New Guinea Tsunami of July 1998—Offshore evidence on the source mechanism, Mar. Geol., 175, 123.
  • Tappin, D. R., P. Watts, and S. T. Grilli (2008), The Papua New Guinea Tsunami of 17 July 1998: Anatomy of a catastrophic event, Nat. Hazards Earth Syst. Sci., 8, 243266.
  • Tappin, D. R., et al. (1999), Sediment slump likely caused 1998 Papua New Guinea tsunami, Eos Trans. AGU, 80(30), 329.
  • ten Brink, U. S., E. L. Geist, and B. D. Andrews (2006), Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico, Geophys. Res. Lett., 33, L11307, doi:10.1029/2006GL026125.
  • ten Brink, U., D. Twichell, P. Lynett, E. Geist, J. Chaytor, H. Lee, B. Buczkowski, and C. Flores (2009), Regional assessment of tsunami potential in the Gulf of Mexico, Tech. Rep. NTHMP, U.S. Geol. Surv. Admin. Rep.
  • Thomson, R. E., A. B. Rabinovich, E. A. Kulikov, I. V. Fine, and B. D. Bornhold (2001), On numerical simulation of the landslide-generated tsunami of November 3, 1994 in Skagway Harbor, Alaska, in Tsunami Research at the End of a Critical Decade, edited by G. Hebenstreit, pp. 243282, Kluwer Acad., Dordrecht.
  • Tinti, S., and E. Bortolucci (2000), Analytical investigation of tsunamis generated by submarine slides, Ann. Geofis., 43, 519536.
  • Tinti, S., E. Bortolucci, and C. Chiavettieri (2001), Tsunami excitation by submarine slides in shallow-water approximation, Pure Appl. Geophys., 158, 759797.
  • Titov, V. V., and C. E. Synolakis (1997), Extreme inundation flows during the Hokkaido-Nansei-Oki tsunami, Geophys. Res. Lett., 24(11), 13151318.
  • Ward, S. N. (2001), Landslide tsunami, J. Geophys. Res., 106, 11,20111,215.
  • Watts, P. (1997), Water waves generated by underwater landslides, PhD thesis, Calif. Inst. of Technol., Pasadena, Calif.
  • Watts, P. (1998), Wavemaker curves for tsunamis generated by underwater landslides, J. Waterw. Port Coastal Ocean Eng., 124(3), 127137.
  • Watts, P. (2000), Tsunami features of solid block underwater landslides, J. Waterw. Port Coastal Ocean Eng., 126(3), 144152.
  • Watts, P., S. T. Grilli, D. R. Tappin, and G. J. Fryer (2005), Tsunami generation by submarine mass failure. Part II: Predictive equations and case studies, J. Waterw. Port Coastal Ocean Eng., 131(6), 298310.
  • Wiegel, R. L. (1955), Laboratory studies of gravity waves generated by the movement of a submarine body, Eos Trans. AGU, 36(5), 759774.