SEARCH

SEARCH BY CITATION

References

  • Anibas, C., J. H. Fleckenstein, N. Volze, K. Buis, R. Verhoeven, P. Meire, and O. Batelaan (2009), Transient or steady-state? Using vertical temperature profiles to quantify groundwater-surface water exchange, Hydrol. Processes, 23(15), 21652177.
  • Belanger, T. V., D. F. Mikutel, and P. A. Churchill (1985), Groundwater seepage nutrient loading in a Florida lake, Water. Res., 19(6), 773781.
  • Bredehoeft, J. D., and I. S. Papadopulos (1965), Rates of vertical groundwater movement estimated from Earth's thermal profile, Water. Resour. Res., 1(2), 325328.
  • Brock, T. D., D. R. Lee, D. Janes and D. Winek (1982), Groundwater seepage as a nutrient source to a drainage lake—Lake Mendota, Wisconsin, Water. Res., 16(7), 12551263.
  • Cherkauer, D. S., and D. C. Nader (1989), Distribution of groundwater seepage to large surface-water bodies: The effect of hydraulic heterogeneities, J. Hydrol., 109, 151165.
  • Constanz, J. (2008), Heat as a tracer to determine streambed water exchanges, Water. Resour. Res., 44, W00D10, doi:10.1029/2008WR006996.
  • Enell, M. (1982), The phosphorus economy of a hypertrophic seepage lake in Scania, south Sweden: Groundwater influence, Hydrobiologia, 86(1–2), 153158.
  • Ferguson, G., and V. Bense (2011), Uncertainty in 1D heat-flow analysis to estimate groundwater discharge to a stream, Groundwater, 49(3), 336347.
  • Frape, S. K., and R. J. Patterson (1981), Chemistry of interstitial water and bottom sediments as indicators of seepage patterns in Perch Lake, Chalk-River, Ontario, Limnol. Oceanogr., 26(3), 500517.
  • Hannah, D. M., I. A. Malcolm, and C. Bradley (2009), Seasonal hyporheic temperature dynamics over riffle bedforms, Hydrol. Processes, 23(15), 21782194, doi: 10:1002/hyp.7256.
  • Harvey, F. E., D. L. Rudolph, and S. K. Frape (2000), Estimating ground water flux into large lakes: Application in the Hamilton Harbor, western Lake Ontario, Ground Water, 38(4), 550565.
  • Hatch, C. E., A. T. Fisher, J. S. Revenaugh, J. Constantz, and C. Ruehl (2006), Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: Method development, Water Resour. Res., 42, W10410, doi.10.1029/2005WR004787.
  • Hausner, M. B., F. Suárez, K. E. Glander, N. van de Giesen, J. S. Selker, and S. W. Tyler (2011), Calibrating single-ended fiber-optic Raman spectra distributed temperature sensing data, Sensors, 11, 10,85910,879.
  • Henderson, R. D., F. D. Day-Lewis, and C. F. Harvey (2009), Investigation of aquifer-estuary interaction using wavelet analysis of fiber-optic temperature data, Geophys. Res. Lett., 36, L06403, doi:10.1029/2008GL036926.
  • Jensen, J. K., and P. Engesgaard (2011), Nonuniform groundwater discharge across a streambed: Heat as a tracer, Vadose Zone J., 10, 98109, doi:10.2136/vzj2010.0005.
  • Kaeser, D., A. Binley, L. Heathwaite, and S. Krause (2009), Spatio-temporal variations of hyporheic flow in a riffle-step-pool sequence, Hydrol. Processes, 23(15), 21382149, doi:10.1002/hyp.7317.
  • Kalbus, E., F. Reinstorf, and M. Schirmer (2006), Measuring methods for groundwater—Surface water interactions: A review, Hydrol. Earth Syst. Sci., 10(6), 873887.
  • Kidmose, J., P. Engesgaad, B. Nilsson, T. Laier, and M. C. Looms (2011), Spatial distribution of seepage at a flow-through lake: Lake Hampen, Western Denmark, Vadose Zone J., 10, 110124, doi: 10.2136/vzj.2010.0017.
  • Kishel, H. F., and P. J. Gerla (2002), Characteristics of preferential flow and groundwater discharge to Shingobee Lake, Minnesota, USA, Hydrol. Processes, 16(10), 19211934.
  • Krabbenhoft, D. P., and K. E. Webster (1995), Transient hydrogeological controls on the chemistry of a seepage lake, Water. Resour. Res., 31(9), 22952305.
  • Krabbenhoft, D. P., C. J. Bowser, M. P. Anderson, and J. W. Valley (1990a), Estimating groundwater exchange with lakes: 1. The stable isotope mass balance method, Water. Resour. Res., 26(10), 24452453.
  • Krabbenhoft, D. P., M. P. Anderson, and C. J. Bowser (1990b), Estimating groundwater exchange with lakes: 2. Calibration of a 3-dimensional solute transport model to a stable isotope plume, Water. Resour. Res., 26(10), 24552462.
  • Krabbenhoft, D. P., C. J. Bowser, C. Kendall, and J. R. Gat (1994), Use of O-18 and deuterium to assess the hydrology of groundwater-lake systems, Environ. Chem. Lakes Reservoirs, 237, 6790.
  • Krause, S., A. L. Heathwaite, A. Binley, and P. Keenan (2009), Nitrate concentration changes along the groundwater—Surface water interface of a small Cumbrian river, Hydrol. Processes, 23(15), 21952211.
  • Krause, S., D. M. Hannah, and T. Blume (2011), Heat transport patterns at pool-riffle sequences of an UK lowland stream, Ecohydrol. J., 4(4), 549563, doi:10.1002/eco.199.
  • Krause, S., T. Blume, and N. J. Cassidy (2012), Investigating patterns and controls of groundwater up-welling in a lowland river by combining fibre-optic distributed temperature sensing with observations of vertical head gradients, Hydrol. Earth Syst. Sci., 16, 17751792.
  • Lautz, L. K., and R. E. Ribaudo (2012), Scaling up point-in-space heat tracing of seepage flux using bed temperatures as a quantitative proxy, Hydrogeol. J., 20, 12231238.
  • Lee, D. R. (1977), Device for measuring seepage flux in lakes and estuaries, Limnol. Oceanogr., 22(1), 140147.
  • Lee, D. R. (1980), Groundwater—Solute influx, Limnol. Oceanogr., 25(1), 183186.
  • Loeb, S. L., and C. R. Goldman (1979), Water and nutrient transport via groundwater from Ward Valley into Lake Tahoe, Limnol. Oceanogr., 24(6),11461154.
  • Lowry, C. S., J. F. Walker, R. J. Hunt, and M. P. Anderson (2007), Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor, Water Resour. Res., 43, W10408, doi:10.1029/2007WR006145.
  • McBride, M. S., and H. O. Pfannkuch (1975), Distribution of seepage within lakebeds, J. Res. U.S. Geol. Surv., 3(5), 505512.
  • Meinikmann, K., G. Nützmann, and J. Lewandowski (2013), Lacustrine groundwater discharge: Combined determination of volumes and spatial patterns, J. Hydrol., 502, 202211.
  • Mortimer, R. J. G., M. D. Krom, D. R. Boyle, and A. Nishri (1999), Use of a high-resolution pore-water gel profiler to measure groundwater fluxes at an underwater saline seepage site in Lake Kinneret, Israel, Limnol. Oceanogr., 44(7), 18021809.
  • Mwakanyamale, K., L. Slater, F. Day-Lewis, M. Elwaseif, and C. Johnson (2012), Spatially variable stage-driven groundwater-surface water interaction inferred from time-frequency analysis of distributed temperature sensing data, Geophys. Res. Lett., 39, L06401, doi:10.1029/2011GL050824.
  • Pfannkuch, H. O., and T. C. Winter (1984), Effect of anisotropy and groundwater system geometry on seepage through lakebeds: 1. Analog and dimensional analysis, J. Hydrol., 75(1–4), 213237.
  • Rosenberry, D. O. (2005), Integrating seepage heterogeneity with the use of ganged seepage meters, Limnol. Oceanogr. Methods, 3, 131142.
  • Schafran, G. C., and C. T. Driscoll (1993), Flow path composition relationships for groundwater entering an acidic lake, Water. Resour. Res., 29(1), 145154.
  • Schmidt, C., M. Bayer-Raich, and M. Schirmer (2006), Characterization of spatial heterogeneity of groundwater-stream water interactions using multiple depth streambed temperature measurements at the reach scale, Hydrol. Earth Syst. Sci., 10, 849859.
  • Schmidt, C., B. Conant, M. Bayer-Raich, and M. Schirmer (2007), Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures, J. Hydrol., 347(3–4), 292302.
  • Schuster, P. F., M. M. Reddy, J. W. LaBaugh, R. S. Parkhurst, D. O. Rosenberry, T. C. Winter, R. C. Antweiler, and W. E. Dean (2003), Characterization of lake water and ground water movement in the littoral zone of Williams Lake, a closed-basin lake in north central Minnesota, Hydrol. Processes, 17(4), 823838.
  • Selker, J. S., L. Thévanaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, M. Stejskal, J. Zeman, M. C. Westhoff, and M. B. Parlange (2006a), Distributed fiber-optic temperature sensing for hydrologic systems, Water Resour. Res., 42, W12202, doi:10.1029/2006WR005326.
  • Selker, J. S., N. C. van de Giesen, M. Westhoff, W. Luxemburg, and M. Parlange (2006b), Fiber-optics opens window on stream dynamics, Geophys. Res. Lett., 33, L24401, doi:10.1029/2006GL027979.
  • Sensornet (2009), Sentinal DTS User Guide SEN2-UM1.0, London, U. K.
  • Shaw, R. D., and E. E. Prepas (1990), Groundwater lake interactions. 2. Nearshore seepage patterns and the contribution of ground-water to lakes in Central Alberta, J. Hydrol., 119(1–4), 121136.
  • Shaw, R. D., J. F. H. Shaw, H. Fricker, and E. E. Prepas (1990), An integrated approach to quantify groundwater transport of phosphorus to Narrow Lake, Alberta, Limnol. Oceanogr., 35(4), 870886.
  • Slater, L. D., D. Ntarlagiannis, F. D. Day-Lewis, K. Mwakanyamale, R. J. Versteeg, A. Ward, C. Strickland, C. D. Johnson, and J. W. Lane Jr. (2010), Use of electrical imaging and distributed temperature sensing methods to characterize surface water–groundwater exchange regulating uranium transport at the Hanford 300 Area Washington, Water Resour. Res., 46, W10533, doi:10.1029/2010WR009110.
  • Stauffer, R. E. (1985), Use of solute tracers released by weathering to estimate groundwater inflow to seepage lakes, Environ. Sci. Technol., 19(5), 405411.
  • Stonestrom, D. A., and J. Constantz (2003), Heat as a tool for studying the movement of ground water near streams, U.S. Geol. Surv. Circ. 1260, Reston, Va.
  • Turcotte, D., and G. Schubert (1982), Geodynamics: Application of Continuum Physics to Geological Problems, John Wiley, New York.
  • Tyler, S. W., J. S. Selker, M. B. Hausner, C. E. Hatch, T. Torgersen, C. E. Thodal, and S. G. Schladow (2009), Environmental temperature sensing using Raman spectra DTS fiber-optic methods, Water Resour. Res., 45, W00D23, doi:10.1029/2008WR007052.
  • Van de Giesen, N., S. C. Steele-Dunne, J. Jansen, O. Hoes, M. B. Hausner, S. Tyler, and J. Selker (2012), “Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing data”, Sensors, 12(5), 54715485.