SEARCH

SEARCH BY CITATION

Keywords:

  • microbaroms;
  • microseisms;
  • spectral wave models;
  • tropical cyclones;
  • wave hindcasting;
  • wave modeling

The strong winds of a tropical cyclone whip up the sea surface, driving ocean waves a dozen meters high. When one such ocean wave runs into another wave that has an equal period but is traveling in the opposite direction, the interaction produces low-frequency sound waves that can be detected thousands of kilometers away. The infrasound signals produced by interacting ocean surface waves—known as microbarom—have typical frequencies around 0.2 hertz. Researchers previously determined that as a hurricane travels along its track, early waves generated by the storm will interact with those generated later on, producing a strong microbarom signal in the storm's wake. Researchers also found, however, that microbarom signals are produced by regular surface ocean behavior, including swell, surface waves, and nontropical cyclone storms.