SEARCH

SEARCH BY CITATION

References

  • Adhya, T. K., P. Pattnaik, S. N. Satpathy, S. Kumaraswamy, and N. Sethunathan (1998), Influence of phosphorus application on methane emission and production in flooded paddy soils, Soil Biol. Biochem., 30(2), 177181.
  • Benzing, D. H. (2000), Bromeliaceae: Profile of an Adaptive Radiation, Cambridge Univ. Press, Cambridge, U.K.
  • Bharati, K., S. R. Mohanty, P. V. L. Padmavathi, V. R. Rao, and T. K. Adhya (2000), Influence of six nitrification inhibitors on methane production in a flooded alluvial soil, Nutr. Cycling Agroecosyst., 58(1–3), 389394.
  • Bodelier, P. L. E., P. Roslev, T. Henckel, and P. Frenzel (2000), Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots, Nature, 403(6768), 421424.
  • Cai, Z. C., G. X. Xing, X. Y. Yan, H. Xu, H. Tsuruta, K. Yagi, and K. Minami (1997), Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management, Plant Soil, 196(1), 714.
  • Chen, P. S., T. Y. Toribara Jr., and H. Warner (1956), Microdetermination of phosphorus, Anal. Chem., 28, 17561758.
  • Conrad, R. (2002), Control of microbial methane production in wetland rice fields, Nutr. Cycling Agroecosyst., 64(1–2), 5969.
  • Estop-Aragones, C., and C. Blodau (2012), Effects of experimental drying intensity and duration on respiration and methane production recovery in fen peat incubations, Soil Biol. Biochem., 47, 19.
  • Fey, A., and R. Conrad (2000), Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil, Appl. Environ. Microbiol., 66(11), 47904797.
  • Fish, D. (1983), Phytotelmata: Flora and fauna, in Phytotelmata: Terrestrial Plants as Hosts for Aquatic Insect Communities, edited by J. H. Frank and L. P. Lounibus, pp. 128, Plexus, Medford, N. J.
  • Frankenberg, C., P. Bergamaschi, A. Butz, S. Houweling, J. F. Meirink, J. Notholt, A. K. Petersen, H. Schrijver, T. Warneke, and I. Aben (2008), Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT, Geophys. Res. Lett., 35, L15811, doi:10.1029/2008GL034300.
  • Gilmartin, A. J. (1977), Variation and distribution—New bromeliad taxon from Ecuador, Taxon, 26(2–3), 223226.
  • Homeier, J., F. A. Werner, S. R. Gradstein, S. W. Breckle, and M. Richter (2008), Potential vegetation and floristic composition of Andean forests in South Ecuador, with a focus on the RBSF, in Gradients in a Tropical Mountain Ecosystem of Ecuador, edited by E. Beck et al., pp. 87101, Springer, Berlin, Heidelberg.
  • Homeier, J., et al. (2012), Tropical Andean forests are highly susceptible to nutrient inputs—Rapid effects of experimental N and P addition to an Ecuadorian montane forest, PLoS ONE, 7(10), e47128, doi:10.1371/journal.pone.0047128.
  • Hyams, D. G. (2010), CurveExpert software, http://www.curveexpert.net.
  • Kluber, H. D., and R. Conrad (1998), Inhibitory effects of nitrate, nitrite, NO and N(2)O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii, FEMS Microbiol. Ecol., 25(4), 331339.
  • Krashevska, V., M. Maraun, L. Ruess, and S. Scheu (2010), Carbon and nutrient limitation of soil microorganisms and microbial grazers in a tropical montane rain forest, Oikos, 119(6), 10201028.
  • Laube, S., and G. Zotz (2003), Which abiotic factors limit vegetative growth in a vascular epiphyte?, Funct. Ecol., 17, 598604.
  • Lindau, C. W. (1994), Methane emissions from Louisiana rice fields amended with nitrogen fertilizers, Soil Biol. Biochem., 26(3), 353359.
  • Lindau, C. W., P. K. Bollich, R. D. Delaune, W. H. Patrick, and V. J. Law (1991), Effect of urea fertilizer and environmental factors on CH4 emissions from a Louisiana, USA rice field, Plant Soil, 136(2), 195203.
  • Martinson, G. O., F. A. Werner, C. Scherber, R. Conrad, M. D. Corre, H. Flessa, K. Wolf, M. Klose, S. R. Gradstein, and E. Veldkamp (2010), Methane emissions from tank bromeliads in neotropical forests, Nat. Geosci., 3(11), 766769.
  • Mohanty, S. R., P. L. E. Bodelier, V. Floris, and R. Conrad (2006), Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils, Appl. Environ. Microbiol., 72(2), 13461354.
  • Mohanty, S. R., P. L. E. Bodelier, and R. Conrad (2007), Effect of temperature on composition of the methanotrophic community in rice field and forest soil, FEMS Microbiol. Ecol., 62(1), 2431.
  • Moser, G., M. Röderstein, N. Soethe, D. Hertel, and C. Leuschner (2008), Altitudinal changes in standing structure and biomass allocation of tropical mountain forests in relation to microclimate and soil chemistry, in Gradients in a Tropical Mountain Ecosystem of Ecuador, edited by E. Beck et al., pp. 229242, Springer, Berlin, Heidelberg.
  • Rath, A. K., B. Ramakrishnan, and N. Sethunathan (2002), Temperature dependence of methane production in tropical rice soils, Geomicrobiol. J., 19(6), 581592.
  • Rath, A. K., B. Ramakrishnan, V. R. Rao, and N. Sethunathan (2005), Effects of rice-straw and phosphorus application on production and emission of methane from tropical rice soil, J. Plant Nutr. Soil Sci., 168(2), 248254.
  • R Development Core Team (2009), R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Rubin, B. E. R., S. M. Gibbons, S. Kennedy, J. Hampton-Marcell, S. Owens, and J. A. Gilbert (2013), Investigating the impact of storage conditions on microbial community composition in soil samples, PLoS ONE, 8(7), e70460, doi:10.1371/journal.pone.0070460.
  • Sass, R. L., F. M. Fisher, F. T. Turner, and M. F. Jund (1991), Methane emission from rice fields as influenced by solar radiation, temperature and straw incorporation, Global Biogeochem. Cycles, 5(4), 335350.
  • Satpathy, S. N., A. K. Rath, B. Ramakrishnan, V. R. Rao, T. K. Adhya, and N. Sethunathan (1997), Diurnal variation in methane efflux at different growth stages of tropical rice, Plant Soil, 195(2), 267271.
  • Schutz, H., W. Seiler, and R. Conrad (1990), Influence of soil-temperature on methane emission from rice paddy fields, Biogeochemistry, 11(2), 7795.
  • Shindell, D. T., G. Faluvegi, D. M. Koch, G. A. Schmidt, N. Unger, and S. E. Bauer (2009), Improved attribution of climate forcing to emissions, Science, 326(5953), 716718.
  • Wang, B., H. U. Neue, and H. P. Samonte (1997), Role of rice in mediating methane emission, Plant Soil, 189(1), 107115.
  • Wang, Z. P., R. D. Delaune, C. W. Lindau, and W. H. Patrick (1992), Methane production from anaerobic soil amended with rice straw and nitrogen fertilizers, Fert. Res., 33(2), 115121.
  • Winkler, U., and G. Zotz (2009), Highly efficient uptake of phosphorus in epiphytic bromeliads, Ann. Bot., 103, 477484.
  • Wolf, K., E. Veldkamp, J. Homeier, and G. O. Martinson (2011), Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador, Global Biogeochem. Cycles, 25, GB4009, doi:10.1029/2010GB003876.
  • Wuebbles, D. J., and K. Hayhoe (2002), Atmospheric methane and global change, Earth Sci. Rev., 57, 177210.
  • Wullaert, H., J. Homeier, C. Valarezo, and W. Wilcke (2010), Response of the N and P cycles of an old-growth montane forest in Ecuador to experimental low-level N and P amendments, For. Ecol. Manage., 260(9), 14341445.
  • Yao, H., R. Conrad, R. Wassmann, and H. U. Neue (1999), Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy, Biogeochemistry, 47(3), 269295.
  • Yuan, Q. A., and Y. H. Lu (2009), Response of methanogenic archaeal community to nitrate addition in rice field soil, Environ. Microbiol. Rep., 1(5), 362369.
  • Zotz, G., and A. Richter (2006), Changes in carbohydrate and nutrient contents throughout a reproductive cycle indicate that phosphorus is a limiting nutrient in the epiphytic bromeliad, Werauhia sanguinolenta, Ann. Bot., 97, 745754.