Global Biogeochemical Cycles

Annual net community production and the biological carbon flux in the ocean



The flux of biologically produced organic matter from the surface ocean (the biological pump), over an annual cycle, is equal to the annual net community production (ANCP). Experimental determinations of ANCP at ocean time series sites using a variety of different metabolite mass balances have made it possible to evaluate the accuracy of sediment trap fluxes and satellite-determined ocean carbon export. ANCP values at the Hawaii Ocean Time-series (HOT), the Bermuda Atlantic Time-series Study (BATS), Ocean Station Papa (OSP) are 3 ± 1 mol C m−2 yr−1—much less variable than presently suggested by satellite remote sensing measurements and global circulation models. ANCP determined from mass balances at these locations are 3–4 times particulate organic carbon fluxes measured in sediment traps. When the roles of dissolved organic carbon (DOC) flux, zooplankton migration, and depth-dependent respiration are considered these differences are reconciled at HOT and OSP but not at BATS, where measured particulate fluxes are about 3 times lower than expected. Even in the cases where sediment trap fluxes are accurate, it is not possible to “scale up” these measurements to determine ANCP without independent determinations of geographically variable DOC flux and zooplankton migration. Estimates of ANCP from satellite remote sensing using net primary production determined by the carbon-based productivity model suggests less geographic variability than its predecessor (the vertically generalized productivity model) and brings predictions at HOT and OSP closer to measurements; however, satellite-predicted ANCP at BATS is still 3 times too low.