SEARCH

SEARCH BY CITATION

References

  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith (1998), Crop evapotranspiration—Guidelines for computing crop water requirements, FAO irrigation and drainage paper 56, Rome, Italy.
  • Black, C. A. (1965), Methods of Soil Analysis, part 2, ASA, Madison, Wisc.
  • Duiker, S. W., and R. Lal (1999), Crop residue and tillage effects on carbon sequestration in a Luvisol in a central Ohio, Soil Till. Res., 52, 7381.
  • Falloon, P., P. Smith, K. Coleman, and S. Marshall (1998), Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model, Soil Biol. Biochem., 30, 12071211.
  • Fan, T., M. Xu, S. Song, G. Zhou, and L. Ding (2008), Trends in grain yields and soil organic C in a long-term fertilization experiment in the China Loess Plateau, J. Plant Nutr. Soil Sci., 171, 448457.
  • Fang, Y., L. Liu, B. C. Xu, and F. M. Li (2011), The relationship between competitive ability and yield stability in an old and a modern winter wheat cultivar, Plant Soil, 347, 723.
  • Food and Agriculture Organization (2010), FAO Statistical Yearbook 2010. [Available at http://www.fao.org/economic/ess/syb/en/.]
  • Gao, X. Z., W. Q. Ma, C. B. Ma, F. S. Zhang, and Y. H. Wang (2002), Analysis on the current status of utilization of crop straw in China [in Chinese with English abstract], J. Huazhong Agri. Univ., 21, 242247.
  • Guo, J. P., and C. D. Zhou (2007), Greenhouse gas emissions and mitigation measures in Chinese agroecosystems, Agri. For. Meteorol., 142, 270277.
  • Guo, L., P. Falloon, K. Coleman, B. Zhou, Y. Li, E. Lin, and F. Zhang (2007), Application of the RothC model to the results of long-term experiments on typical upland soils in northern China, Soil Use Manage., 23, 6370.
  • Huang, H., S. Li, X. Li, J. Yao, W. Cao, M. Wang, and R. Liu (2006), Analysis on the status of organic fertilizer and its development strategies in China [in Chinese with English abstract], Soil Fert., 1, 38.
  • Huang, Y., W. Zhang, W. J. Sun, and X. H. Zheng (2007), Net primary production of Chinese croplands from 1950 to 1999, Ecol. Appl., 17(3), 692701, doi:10.1890/05-1792.
  • IPCC (2007a), Agriculture, in Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by B. Metz et al., chap. 8, pp. 498540, Cambridge Univ. Press, Cambridge, U. K., and New York.
  • IPCC (2007b), Climate models and their evaluation, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., chap. 8, pp. 590662, Cambridge Univ. Press, Cambridge, U. K., and New York.
  • Jenkinson, D. S., and K. Coleman (1999), A model for the turnover of carbon in soil—Model description and windows user guide, Rothamsted Research, Harpenden, U. K.
  • Ju, X. T., F. S. Zhang, X. M. Bao, V. Romheld, and M. Roelcke (2005), Utilization and management of organic wastes in Chinese agriculture: Past, present and perspectives, Sci. China Ser. C Life Sci., 48, 965979.
  • Kundsen, D., G. A. Peterson, P. F. Pratt, and A. L. Page (1982), Lithium, sodium, and potassium, in Methods of Soil Analysis, part 2, 2nd ed., ASA and SSSA, Madison, Wisc.
  • Lal, R. (2004), Soil carbon sequestration impacts on global climate change and food security, Science, 304, 16231627.
  • Li, C. S., Y. H. Zhuang, S. Frolking, J. Galloway, R. Harriss, B. Moore III, D. Schimel, and X. K. Wang (2003), Modeling soil organic carbon change in croplands of China, Ecol. Appl., 13(2), 327336, doi:10.1890/1051-0761(2003)013[0327:MSOCCI]2.0.CO;2.
  • Li, C., S. Frolking, and R. Harriss (1994), Modeling carbon biogeochemistry in agricultural soils, Global Biogeochem. Cycles, 8, 237254.
  • Li, F. P., Z. X. Xu, X. C. Liu, X. P. Li, and Z. F. Liu (2011), Assessment on performance of different general circulation model in Songhuajiang River Basin [in Chinese with English abstract], J.China Hydrol., 31, 2431.
  • Li, S. K., H. Y. Tu, W. F. Zhang, and G. Yang (1992), The distribution of maize root in soil and its relation to aboveground [in Chinese with English abstract], Xinjiang Agri. Sci., 2, 99103.
  • Liang, B., X. Yang, X. He, D. V. Murphy, and J. Zhou (2012), Long-term combined application of manure and NPK fertilizers influenced nitrogen retention and stabilization of organic C in Loess soil, Plant Soil, 353, 249260.
  • Lin, E. D., F. Sun, and W. Wang (2012), Greenhouse gases mitigation and carbon market in agriculture in China [in Chinese], Nanjing, China.
  • Liu, J. G., and J. Diamond (2005), China's environment in a globalizing world, Nature, 435, 11791186.
  • Liu, S. Q., and F. B. Song (2007), Comparative study on the characteristics of root system among maize genotypes with different tolerance to drought [in Chinese with English abstract], J. Yangzhou Univ. (Agri. Life Sci. Edit.), 28, 6874.
  • Lobell, D. B., and C. B. Field (2008), Estimation of the carbon dioxide (CO2) fertilization effect using growth rate anomalies of CO2 and crop yields since 1961, Global Change Biol., 14, 3945.
  • Lu, F., X. Wang, B. Han, Z. Ouyang, X. Duan, H. Zheng, and H. Miao (2009), Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland, Global Change Biol., 15, 281305.
  • Lu, R. K. (2000), Analytical Methods of Soil Agricultural Chemistry [in Chinese], China Agricultural Science and Technology Press, Beijing, China.
  • Lu, Z. M., and Q. X. Xiong (1991), Field experiment on vertical distribution of winter wheat roots [in Chinese with English abstract], J. Appl. Ecol., 2, 127133.
  • Ma, Y. X. (1987), A study on growing dynamic of wheat root system in various soils [in Chinese with English abstract], Acta Agronomica Sinica, 13, 3744.
  • Miao, G. Y., Y. T. Zhang, J. Yin, Y. S. Hou, and X. L. Pan (1989), A study on the development of root system in winter wheat under unirrigated conditions in semi-arid Loess Plateau [in Chinese with English abstract], Acta Agronomica Sinica, 15, 104115.
  • Murphy, J., and J. P. Riley (1962), A modified of single solution method for the determination of phosphate in nature water, Analytical Chimica Acta, 27, 3136.
  • National Bureau of Statistics of China (2012), China Statistical Year Book [in Chinese], China Statistics Press, Beijing, China.
  • NCATS (1994), Chinese Organic Fertilizer Handbook [in Chinese], National Center for Agricultural Technology Service, Beijing, China.
  • Olsen, S. R., C. V. Cole, F. S. Watanabe, and A. Dean (1954), Estimation of available phosphorus in soils by extraction with sodium bicarbonate, (USDA Circ. 939), Government Printing Office, Washington, D. C.
  • Post, W. M., and K. C. Kwon (2000), Soil carbon sequestration and land-use change: Processes and potential, Global Change Biol., 6, 317328.
  • RRes (2007), Rothamsted Carbon Model (RothC). Rothamsted Research, Harpenden, U. K. [Available at www.rothamsted.bbsrc.ac.uk/aen/carbon/rothc.htm.]
  • Schlesinger, W. H. (1999), Carbon and agriculture—Carbon sequestration in soils, Science, 284, 20952095.
  • Shen, H. (1982), The method of soil nutrition map design [in Chinese with English abstract], Soil Fert., 5, 2122.
  • Smith, P., et al. (1997), A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments, Geoderma, 81, 153225.
  • Solot, I. B. (2006), The Chinese agricultural policy trilemma, Perspectives, 7, 3646.
  • Sun, W., Y. Huang, W. Zhang, and Y. Yu (2010), Carbon sequestration and its potential in agricultural soils of China, Global Biogeochem. Cycles, 24, GB3001, doi:10.1029/2009GB003484.
  • Walkley, A., and I. A. Black (1934), An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method, Soil Sci., 37, 2938.
  • Wan, Y., E. Lin, W. Xiong, Y. E. Li, and L. Guo (2011), Modeling the impact of climate change on soil organic carbon stock in upland soils in the 21st century in China, Agri. Ecosyst. Environ., 141, 2331.
  • West, T. O., and W. M. Post (2002), Soil organic carbon sequestration rates by tillage and crop rotation a global data analysis, Soil Sci. Soc. Am. J., 66, 19301946.
  • Xie, Z. B., J. Zhu, G. Liu, C. Georg, H. Toshihiro, C. M. Chen, H. F. Sun, H. Y. Tang, and Q. Zeng (2007), Soil organic carbon stocks in China and changes from 1980s to 2000s, Global Change Biol., 13, 19892007.
  • Xu, M. G., G. Q. Liang, and F. D. Zhang (2006), Soil Fertility Evolution in China, China Agricultural Science and Technology Press, Beijng, China.
  • Yan, X., Z. Cai, S. Wang, and P. Smith (2010), Direct measurement of soil organic carbon content change in the croplands of China, Global Change Biol., 17, 14871496.
  • Yang, F., R. Li, Y. Cui, and H. Duan (2010), Utilization and develop strategy of organic fertilizer resources in China [in Chinese with English abstract], Soil Fert. China, 4, 7782.
  • Yang, H. S. (2006), Resource management, soil fertility and sustainable crop production: Experiences of China, Agri. Ecosyst. Environ., 116, 2733.
  • Yang, X. M., X. P. Zhang, and H. J. Fang (2003), Long-term effects of fertilization on soil organic carbon changes in continuous corn of northeast China RothC model simulations, Environ. Manage., 32, 459465.
  • Ye, L. M., et al. (2013), Climate change impact on China food security in 2050, Agron. Sustain. Dev., 33, 363374.
  • Yu, Y., Z. Guo, H. Wu, J. A. Kahmann, and F. Oldfield (2009), Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000, Global Biogeochem. Cycles, 23, GB2021, doi:10.1029/2008GB003428.
  • Zhang, W. J., X. J. Wang, M. G. Xu, S. M. Huang, H. Liu, and C. Peng (2010), Soil organic carbon dynamics under long-term fertilizations in arable land of north China, Biogeosciences, 7, 409425.
  • Zhao, M., J. Zhou, and K. Kalbitz (2008), Carbon mineralization and properties of water-extractable organic carbon in soils of the south Loess Plateau in China, Euro. J. Soil Biol., 44, 158165.