Sea level rise, spatially uneven and temporally unsteady: Why the U.S. East Coast, the global tide gauge record, and the global altimeter data show different trends


  • Tal Ezer

    Corresponding author
    1. Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, Virginia, USA
    • Corresponding author: T. Ezer, Center for Coastal Physical Oceanography, Old Dominion University, 4111 Monarch Way, Norfolk, VA 23508, USA. (

    Search for more papers by this author


[1] Impacts of ocean dynamics on spatial and temporal variations in sea level rise (SLR) along the U.S. East Coast are characterized by empirical mode decomposition analysis and compared with global SLR. The findings show a striking latitudinal SLR pattern. Sea level acceleration consistent with a weakening Gulf Stream is maximum just north of Cape Hatteras and decreasing northward, while SLR driven by multidecadal variations, possibly from climatic variations in subpolar regions, is maximum in the north and decreasing southward. The combined impact of sea level acceleration and multidecadal variations explains why the global mean SLR obtained from ~20 years of altimeter data is about twice the century-long global SLR obtained from tide gauge data. The sea level difference between Bermuda and the U.S. coast is highly correlated with the transport of the Atlantic Overturning Circulation, a result with implications for detecting past and future climatic changes using tide gauge data.