• Adcock, R. J. (1878), A problem in least squares, The Analyst, Des Moines, Iowa, pp. 553.
  • Allen, M., and P. Stott (2003), Estimating signal amplitudes in optimal fingerprinting, Part I: Theory, Clim. Dyn., 21, 477491.
  • Allen, M., and S. Tett (1999), Checking for model consistency in optimal fingerprinting, Clim. Dyn., 15(6), 419434.
  • Deming, W. E. (1943), Statistical Adjustment of Data, Wiley, New York.
  • De Leeuw, J. (1994), Block relaxation algorithms in statistics, in Information Systems and Data Analysis, edited by H. H. Bock et al., pp. 308325, Springer-Verlag, Berlin.
  • Dempster, A. P., N. M. Laird, and D. Rubin (1977), Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B, 39(1), 138.
  • Fuller, W. A. (1987), Measurement Error Models, John Wiley, New York.
  • Geman, S., and D. Geman (1984), Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., 6(6), 721741.
  • Gillard, J. (2010), An overview of linear structural models in errors in variables regression, REVSTAT Stat. J., 8(1), 5780.
  • Hegerl, G., H. Von Storch, B. Santer, U. Cubash, and P. Jones (1996), Detecting greenhouse gas-induced climate change with an optimal fingerprint method, J. Clim., 9(10), 22812306.
  • Hegerl, G. C., F. W. Zwiers, P. Braconnot, N. P. Gillett, Y. Luo, J. A. Marengo Orsini, N. Nicholls, J. E. Penner, and P. A. Stott (2007), Understanding and attributing climate change, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U. K., and New York.
  • Hegerl, G., and F. Zwiers (2011), Use of models in detection and attribution of climate change, Wiley Interdiscip. Rev. Clim. Change, 2, 570591, doi:10.1002/wcc.121.
  • Huntingford, C., P. Stott, M. Allen, and F. Lambert (2006), Incorporating model uncertainty into attribution of observed temperature change, Geophys. Res. Lett., 33, L05710, doi:10.1029/2005GL024831.
  • Pearl, J. (2009), Causal inference in statistics: An overview, Stat. Surv., 3, 96146.
  • Lauritzen, S. L. (1996), Graphical Models, Clarendon Press, Oxford, U. K.
  • Nounou, M. N., B. R. Bakshi, P. K. Goel, and X. Shen (2002), Process modeling by Bayesian latent variable regression, AIChE J., 48, 17751793.
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007), Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge Univ. Press, New York.
  • Ribes, A., S. Planton, and L. Terray (2012), Regularised optimal fingerprint for attribution. Part I: Method, properties and idealised analysis, Clim. Dyn., 41(11-12), 28172836.
  • Schaffrin, B., and A. Wieser (2008), On weighted total least-squares adjustment for linear regression, J. Geod., 82, 415421.
  • Van Huffel, S., and J. Vanderwaal (1994), The Total Least Squares Problem: Computational Aspects and Analysis, SIAM, Philadelphia, Pa.
  • Venzon, D. J., and S. H. Moolgavkar (1988), A method for computing profile likelihood-based confidence intervals, Appl. Stat., 37, 8794.
  • Wright, S. (1921), Correlation and causation, J. Agric. Res., 20, 557585.