SEARCH

SEARCH BY CITATION

Keywords:

  • internal waves;
  • mixing;
  • hydraulics;
  • coastal

We report breaking internal lee waves, strong mixing, and hydraulic control associated with wind-driven up-canyon flow in Juan de Fuca Canyon, Washington. Unlike the flow above the canyon rim, which shows a tidal modulation typical on continental shelves, the flow within the canyon is persistently up-canyon during our observations, with isopycnals tilted consistent with a geostrophic cross-canyon momentum balance. As the flow encounters a sill near the canyon entrance at the shelf break, it accelerates significantly and undergoes elevated mixing on the upstream and downstream sides of the sill. On the downstream side, a strong lee wave response is seen, with displacements of O(100 m) and overturns tens of meters high. The resulting diffusivity is O(10−2 m2 s−1), sufficient to substantially modify coastal water masses as they transit the canyon and enter the Salish Sea estuarine system.