SEARCH

SEARCH BY CITATION

References

  • Alexander, L. V., and J. M. Arblaster (2009), Assessing trends in observed and modelled climate extremes over Australia in relation to future projections, Int. J. Climatol., 29, 417435.
  • Ashfaq, M., C. B. Skinner, and N. S. Diffenbaugh (2011), Influence of SST biases on future climate change projections, Clim. Dyn., 36, 13031319.
  • Beesley, C., A. Frost, and J. Zajaczkowski (2009), A comparison of the BAWAP and SILO spatially interpolated daily rainfall datasets. Pages 3886–3892 in World IMACS/MODSIM Congress, Cairns.
  • Bennett, J. C., F. L. N. Ling, B. Graham, S. P. Corney, G. K. Holz, M. R. Grose, C. J. White, S. M. Gaynor, and N. L. Bindoff (2010), Climate Futures for Tasmania: Water and Catchments Technical Report, Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania.
  • Bennett, J. C., F. L. N. Ling, D. A. Post, M. R. Grose, S. P. Corney, B. Graham, G. K. Holz, J. J. Katzfey, and N. L. Bindoff (2012), High-resolution projections of surface water availability for Tasmania, Australia, Hydrol. Earth Syst. Sci., 16, 12871303.
  • Bennett, J. C., M. R. Grose, S. P. Corney, C. J. White, G. K. Holz, J. J. Katzfey, D. A. Post, and N. L. Bindoff (2013), Performance of an empirical bias-correction of a high-resolution climate dataset, Int. J. Climatol., doi:10.1002/joc.3830.
  • Berbery, E. H., and M. S. Fox-Rabinovitz (2003), Multiscale diagnosis of the North American Monsoon System using a variable-resolution GCM, J. Clim., 16, 19291947.
  • Boberg, F., and J. H. Christensen (2012), Overestimation of Mediterranean summer temperature projections due to model deficiencies, Nat. Clim. Change, 2, 433436.
  • Boe, J., L. Terray, F. Habets, and E. Martin (2007), Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies, Int. J. Climatol., 27, 16431655.
  • Bureau of Meteorology (2008), Climate of Australia, Bureau of Meteorology, Melbourne.
  • Caian, M., and J.-F. Geleyn (1997), Some limits to the variable-mesh solution and comparison with the nested-LAM solution, Q. J. R. Meteorol. Soc., 123, 743766.
  • Cechet, R. P., et al. (2012), Climate Futures for Tasmania: Severe Wind Hazard and Risk Technical Report, Geosciences Australia, Canberra, Australia.
  • Charles, S. P., B. C. Bates, P. H. Whetton, and J. P. Hughes (1999), Validation of downscaling models for changed climate conditions: Case study of southwestern Australia, Clim. Res., 12, 114.
  • Chiew, F. H. S., J. Teng, J. Vaze, D. A. Post, J. M. Perraud, D. G. C. Kirono, and N. R. Viney (2009), Estimating climate change impact on runoff across southeast Australia: Method, results and implications of the modeling method, in Water Resour. Res., 45, W10414, doi:10.1029/2008WR007338.
  • Christensen, J. H., and O. B. Christensen (2007), A summary of the PRUDENCE model projections of changes in European climate by the end of this century, Clim. Change, 81, 730.
  • Christensen, J. H., et al. (2007), Regional climate projections, in The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., pp. 847940, Cambridge Univ. Press, Cambridge, United Kingdom and New York, N.Y., U.S.A.
  • Christensen, J. H., F. Boberg, O. B. Christensen, and P. Lucas-Picher (2008), On the need for bias correction of regional climate change projections of temperature and precipitation, Geophys. Res. Lett., 35, L20709, doi:10.1029/2008GL035694.
  • Corney, S. P., J. K. Katzfey, J. McGregor, M. Grose, C. White, G. Holz, J. Bennett, S. Gaynor, and N. L. Bindoff (2010), Climate Futures for Tasmania: Methods and Results on Climate Modelling, Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart.
  • Cubasch, U., H. von Storch, J. Waszkewitz, and E. Zorita (1996), Estimates of climate change on southern Europe derived from dynamical climate model output, Clim. Res., 7, 129149.
  • Di Luca, A., R. de Elia, and R. Laprise (2012), Potential for added value in precipitation simulated by high-resolution nested regional climate models and observations, Clim. Dyn., 38, 12291247.
  • Diez, E., A. Primo, J. A. Garcia-Moya, J. M. Guttierez, and B. Orfila (2005), Statistical and dynamical downscaling of precipitation over Spain from DEMETER seasonal forecasts, Tellus Ser. a Dyn. Meteorol. Oceanogr., 57, 409423.
  • Engelbrecht, F. A., J. L. McGregor, and C. J. Engelbrecht (2009), Dynamics of the Conformal-Cubic Atmospheric Model projected climate-change signal over southern Africa, Int. J. Climatol., 29, 10131033.
  • Feng, J., D.-K. Lee, C. Fu, J. Tang, Y. Sato, H. Kato, J. L. McGregor, and K. Mabuchi (2011), Comparison of four ensemble methods combining regional climate simulations over Asia, Meteorol. Atmos. Phys., 111, 4153.
  • Feser, F., B. Rockel, H. von Storch, J. Winterfeldt, and M. Zahn (2011), Regional climate models add value to global model data: A review and selected examples, Bull. Am. Meteorol. Soc., 92, 11811192.
  • Foley, A. M. (2010), Uncertainty in regional climate modelling: A review, Prog. Phys. Geogr., 34, 647670.
  • Fowler, H. J., and R. L. Wilby (2007), Beyond the downscaling comparison study, Int. J. Climatol., 27, 15431545.
  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi (2007), Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling, Int. J. Climatol., 27, 15471578.
  • Fox-Rabinovitz, M., J. Côté, B. Dugas, M. Déqué, J. L. McGregor, and A. Belochitski (2008), Stretched-Grid Model Intercomparison Project: Decadal regional climate simulations with enhanced variable and uniform-resolution GCMs, Meteorol. Atmos. Phys., 100, 159178.
  • Frost, A. J., et al. (2011), A comparison of multi-site daily rainfall downscaling techniques under Australian conditions, J. Hydrol., 408, 118.
  • Gates, W. L., et al. (1998), An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I), Bull. Am. Meteorol. Soc., 73, 19621970.
  • Grose, M. R., I. Barnes-Keoghan, S. P. Corney, C. J. White, G. K. Holz, J. C. Bennett, S. M. Gaynor, and N. L. Bindoff (2010), Climate Futures for Tasmania: General Climate Technical Report, Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania.
  • Grose, M., M. J. Pook, P. C. McIntosh, J. S. Risbey, and N. L. Bindoff (2012), The simulation of cutoff lows in a regional climate model: Reliability and future trends, Clim. Dyn., 39, 445459.
  • Grose, M. R., S. P. Corney, J. K. Katzfey, J. C. Bennett, G. K. Holz, C. J. White, and N. L. Bindoff (2013), A regional response in mean westerly circulation and rainfall to projected climate warming over Tasmania, Australia, Clim. Dyn., 40, 20352048.
  • Held, I. M., and B. J. Soden (2006), Robust responses of the hydrological cycle to global warming, J. Clim., 19, 56865699.
  • Holz, G., et al. (2010), Climate Futures for Tasmania: Impacts on Agriculture Technical Report, Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania.
  • Hughes, L. (2003), Climate change and Australia: Trends, projections and impacts, Aust. Ecol., 28, 423443.
  • Ines, A. V. M., and J. W. Hansen (2006), Bias correction of daily GCM rainfall for crop simulation studies, Agric. For. Meteorol., 138, 4453.
  • IPCC (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, U.K.
  • Johnson, I. R., D. F. Chapman, V. O. Snow, R. J. Eckard, A. J. Parsons, M. G. Lambert, and B. R. Cullen (2008), DairyMod and EcoMod: Biophysical pasture-simulation models for Australia and New Zealand, Aust. J. Exp. Agric., 48, 621631.
  • Jones, D. A., W. Wang, and R. Fawcett (2009), High-quality spatial climate data-sets for Australia, Aust. Meteorol. Oceanogr. J., 58, 233248.
  • Kanamitsu, M., and L. DeHaan (2011), The Added Value Index: A new metric to quantify the added value of regional models, J. Geophys. Res., 116, D11106, doi:10.1029/2011JD015597.
  • Katzfey, J. J., J. McGregor, K. C. Nguyen, and M. Thatcher (2009), Dynamical downscaling techniques: Impacts on regional climate change signals. 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation, edited by R. S. Anderssen, R. D. Braddock and L. T. H. Newham, Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation: Cairns, pp. 39423947, Cairns. [Available online at http://www.mssanz.org.au/modsim09.]
  • Katzfey, J., J. L. McGregor, K. Nguyen, and M. Thatcher (2010), Regional climate change projection development and interpretation for Indonesia final report for AusAID project. CSIRO Marine and Atmospheric Research, Melbourne.
  • Keating, B. A., et al. (2003), An overview of APSIM: A model designed for farming systems simulation, Eur. J. Agron., 18, 267288.
  • Kidston, J., and E. P. Gerber (2010), Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology, Geophys. Res. Lett., 37, L09708, doi:10.1029/2010GL042873.
  • Kowalczyk, E. A., J. R. Garratt, and P. B. Krummel (1994), Implementation of a soil-canopy scheme into the CSIRO GCM—Regional aspects of the model response. CSIRO Div. Atmospheric Research Tech. Paper.
  • Lacis, A., and J. Hansen (1974), A parameterisation of the absorption of solar radiation in the Earth's atmosphere, J. Atmos. Sci., 31, 118133.
  • Lal, M., J. L. McGregor, and K. C. Nguyen (2008), Very high-resolution climate simulation over Fiji using a global variable-resolution model, Clim. Dyn., 30, 293305.
  • Langford, J. (1965), Weather and Climate, Lands and Survey Department, Hobart.
  • Lin, J. (2007), The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis, J. Clim., 20, 44974525.
  • Maraun, D. (2012), Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums, Geophys. Res. Lett., 39, L06706, doi:10.1029/2012GL051210.
  • Maraun, D., et al. (2010), Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user, Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.
  • McGregor, J. L. (2003), A new convection scheme using a simple closure. Research Report 93, Bureau of Meteorology Research Centre, Melbourne.
  • McGregor, J. L. (2005), CCAM: Geometric aspects and dynamical formulation. Technical Paper 70, CSIRO Atmospheric Research, Melbourne.
  • McGregor, J. L., and M. R. Dix (2001), The CSIRO Conformal-Cubic Atmospheric GCM, in IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics, edited by P. F. Hodnett, pp. 197202, Springer, Netherlands.
  • McGregor, J. L., and M. R. Dix (2008), An updated description of the Conformal-Cubic Atmospheric Model, in High Resolution Numerical Modelling of the Atmosphere and Ocean, edited by K. Hamilton and W. Ohfuchi, pp. 5175, Springer, New York.
  • McGregor, J. L., and K. Nguyen (2009), Dynamical downscaling from climate change experiments. Final report of Project 2.1.5b for the South Eastern Australian Climate Initiative. CSIRO Marine and Atmospheric Research, Melbourne.
  • McGregor, J. L., H. B. Gordon, I. G. Watterson, M. R. Dix, and L. D. Rotstayn (1993), The CSIRO 9-level atmospheric general circulation model. Technical Paper 26, CSIRO Atmospheric Research, Melbourne.
  • Mearns, L. O., F. Giorgi, P. H. Whetton, D. Pabon, M. Hulme, and M. Lal (2003), Guidelines for use of climate scenarios developed from regional climate model experiments. DDC of IPCC TGCIA.
  • Mechoso, C. R., et al. (1995), The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models, Mon. Weather Rev., 123, 28252838.
  • Meehl, G., A. C. Covey, T. Delworth, M. Latif, B. J. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor (2007a), The WCRP CMIP3 multi-model dataset: A new era in climate change research, Bull. Am. Meteorol. Soc., 88, 13831394.
  • Meehl, G. A., et al. (2007b), Global Climate Projections, in The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, United Kingdom and New York, N.Y., U.S.A.
  • Morrongiello, J. R., et al. (2011), Climate change and its implications for Australia's freshwater fish, Mar. Freshwater Res., 62, 10821098.
  • Murphy, J. (1999), An evaluation of statistical and dynamical techniques for downscaling local climate, J. Clim., 12, 22562284.
  • Murphy, J. (2000), Predictions of climate change over Europe using statistical and dynamical downscaling techniques, Int. J. Climatol., 20, 489501.
  • Nakicenovic, N., and R. Swart (Eds) (2000), Special Report on Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, U.K.
  • Nguyen, K., and J. L. McGregor (2009a), Analyses of climate change for South East Queensland. CSIRO Technical Report, 978-1-921605-11-6. CSIRO Marine and Atmospheric Research, Melbourne.
  • Nguyen, K., and J. L. McGregor (2009b), Modelling the Asian summer monsoon using CCAM, Clim. Dyn., 32, 219236.
  • Nguyen, K. C., J. J. Katzfey, and J. L. McGregor (2011), Global 60 km simulations with CCAM: Evaluation over the tropics, Clim. Dyn., 39, 637654.
  • Nunez, M., and J. L. McGregor (2007), Modelling future water environments of Tasmania, Australia, Clim. Res., 34, 2537.
  • Palmer, T. N., G. J. Shutts, R. Hagedorn, F. J. Doblas-Reyes, T. Jung, and M. Leutbecher (2005), Representing model uncertainty in weather and climate prediction, Annu. Rev. Earth Planet. Sci., 33, 163193.
  • Perkins, S. E., A. J. Pitman, N. J. Holbrook, and J. McAneney (2007), Evaluation of the AR4 climate models' simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions, J. Clim., 20, 43564376.
  • Post, D. A., F. H. S. Chiew, J. Teng, N. R. Viney, F. L. N. Ling, G. Harrington, R. S. Crosbie, B. Graham, S. Marvanek, and R. McLoughlin (2012), A robust methodology for conducting large- scale assessments of current and future water availability and use: A case study in Tasmania, Australia, J. Hydrol., 412–413, 233245.
  • Randall, D. A., et al. (2007), Climate Models and Their Evaluation, Cambridge Univ. Press, Cambridge, U.K.
  • Reynolds, R. W. (1988), A real-time global sea surface temperature analysis, J. Clim., 1, 7586.
  • Risbey, J. S., M. J. Pook, P. C. McIntosh, M. C. Wheeler, and H. H. Hendon (2009), On the remote drivers of rainfall variability in Australia, Mon. Weather Rev., 137, 32333253.
  • Rotstayn, L. D. (1997), A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models, Q. J. R. Meteorol. Soc., 123, 12271282.
  • Rotstayn, L. D., M. A. Collier, M. R. Dix, Y. Feng, H. B. Gordon, S. P. O'Farrell, I. N. Smith, and J. Syktus (2010), Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment, Int. J. Climatol., 30, 10671088.
  • Schmidt, F. (1977), Variable fine mesh in spectral global model, Beitr. Phys. Atmos., 50, 211217.
  • Schwarzkopf, M. D., and S. B. Fels (1991), The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes, J. Geophys. Res., 96, 90759096.
  • Smith, I., and E. Chandler (2010), Refining rainfall projections for the Murray Darling Basin of south-east Australia: The effect of sampling model results based on performance, Clim. Change, 102(3–4), 377393, doi:10.1007/s10584-009-9757-1.
  • Smith, I. N., and F. H. S. Chiew (2009), Document and assess methods for generating inputs to hydrological models and extend delivery of projections across Victoria. South East Australian Climate Initiative.
  • Taylor, K. E. (2001), Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 71837192.
  • Thatcher, M., and J. McGregor (2009), Using a scale-selective filter for dynamical downscaling with the conformal cubic atmospheric model, Mon. Weather Rev., 137, 17421752.
  • van Oldenborgh, G. J., Y. S. Philip, and M. Collins (2005), El-Nino in a changing climate a multi-model study, Ocean Sci., 1, 8195.
  • Watterson, I. G. (2008), Calculation of probability density functions for temperature and precipitation change under global warming, J. Geophys. Res., 113, D12106, doi:10.1029/2007JD009254.
  • Watterson, I. G., J. L. McGregor, and K. Nguyen (2008), Changes in extreme temperatures of Australasian summer simulated by CCAM under global warming, and the roles of winds and land-sea contrasts, Aust. Met. Mag., 57, 195212.
  • Whetton, P., K. Hennessy, J. Clarke, K. L. McInnes, and D. Kent (2012), Use of representative climate futures in impact and adaptation assessment, Clim. Change, 115, 433442.
  • White, R. H., and R. Toumi (2013), The limitations of bias correcting regional climate model inputs, Geophys. Res. Lett., 40, 29072912, doi:10.1002/grl.50612.
  • White, C. J., L. A. Sanabria, M. R. Grose, S. P. Corney, J. C. Bennett, G. K. Holz, K. L. McInnes, R. P. Cechet, S. M. Gaynor, and N. L. Bindoff (2010), Climate Futures for Tasmania: Extreme Events Technical Report, Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania.
  • White, C. J., K. L. McInnes, R. P. Cechet, S. P. Corney, M. R. Grose, G. K. Holz, J. J. Katzfey, and N. L. Bindoff (2013), On regional dynamical downscaling for the assessment and projection of future temperature and precipitation extremes across Tasmania, Australia, Clim. Dyn., doi:10.1007/s00382-013-1718-8.
  • Xu, Z., and Z. Yang (2012), An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations, J. Clim., 25, 62716286.