SEARCH

SEARCH BY CITATION

References

  • Christensen, O. B., and J. H. Christensen (2004), Intensification of extreme European summer precipitation in a warmer climate, Global Planet. Change, 44, 107117.
  • Collins, W. J., et al. (2011), Development and evaluation of an Earth-system model—HadGEM2, Geosci. Model Dev. Discuss., 4, 9971062.
  • Dankers, R., and R. Hiederer (2008), Extreme temperatures and precipitation in Europe: Analysis of a high-resolution climate change scenario, Office for Official Publications of the European Communities Luxembourg, EUR. 23291.
  • De By, R. A. (2001), Principles of Geographic Information Systems, ITC Educational Textbook Series 1, pp. 234, ITC, Enschede.
  • Emori, S., A. Hasegawa, T. Suzuki, and K. Dairaku (2005), Validation, parameterization dependence, and future projection of daily precipitation simulated with a high-resolution atmospheric GCM, Geophys. Res. Lett., 32, L06708, doi:10.1029/2004GL022306.
  • Frich, P., L. V. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A. M. G. Klein Tank, and T. Peterson (2002), Observed coherent changes in climatic extremes during the second half of the twentieth century, Climate Res., 19, 193212.
  • Gabriel, K. R., and J. Neumann (1962), A Markov chain model for daily rainfall occurrence at Tel Aviv, Q. J. Roy. Meteorol. Soc., 88, 9095.
  • Gemmer, M., S. Becker, and T. Jiang (2004), Observed monthly precipitation trends in China 1951–2002, Theor. Appl. Climatol., 77, 3945.
  • Geophysical Fluid Dynamics Laboratory (2013), Earth System Models. http://www.gfdl.noaa.gov/earth-system-model.
  • Griffies, S. M., M. Winton, and B. L. Samuels (2004), The Large and Yeager (2004) dataset and CORE, NOAA Geophysical Fluid Dynamics Laboratory.
  • Hashmi, M. Z., A. Y. Shamseldin, and B. W. Melville (2009), Downscaling of future rainfall extreme events: A weather generator based approach, 18th World IMACS/MODSIM congress, Cairns, Australia.
  • Hollander, M., and D. A. Wolfe (1999), Nonparametric Statistical Methods, John Wiley & Sons, Inc., Hoboken, HJ.
  • International Panel on Climate Change (2007), Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, U.S.A.
  • Jeong, D. I., A. St-Hilaire, T. B. M. J. Ouarda, and P. Gachon (2013), Projection of future daily precipitation series and extreme events by using a multi-site statistical downscaling model over the great Montréal area, Québec, Canada, Hydrol. Res., doi:10.2166/nh.2012.183.
  • Jiang, Z., J. Song, L. Li, W. Chen, Z. Wang, and J. Wang (2012), Extreme climate events in China: IPCC-AR4 model evaluation and projection, Clim. Change, 110, 385401.
  • Jones, P. D., and P. A. Reid (2001), Assessing future changes in extreme precipitation over Britain using regional climate model integrations, Int. J. Climatol., 21, 13371356.
  • King, L. M., S. Irwin, R. Sarwar, A. I. McLeod, and S. P. Simonovic (2012), The effects of climate change on extreme precipitation events in the upper Thames River Basin: A comparison of downscaling approaches, Can. Water Res. Assoc., 37(3), 253274.
  • Lenton, T. M., M. S. Williamson, N. R. Edwards, R. Marsh, A. R. Price, A. J. Ridgewell, J. G. Shepherd, and S. J. Cox (2006), Millennial timescale carbon cycle and climate change in an efficient Earth system model, Climate Dynam., 26(7–8), 687711.
  • Li, W., R. Fu, and R. E. Dickinson (2006), Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4, J. Geophys. Res., 111, D02111, doi:10.1029/2005JD006355.
  • Li, Z., F. L. Zheng, W. Z. Liu, and D. J. Jiang (2012), Spatially downscaling GCMs outputs to project changes in extreme precipitation and temperature events on the Loess Plateau of China during the 21st Century, Global Planet. Change, 82–83, 6573.
  • Li, J., Q. Zhang, Y. D. Chen, and V. P. Singh (2013), GCMs-based spatiotemporal evolution of climate extremes during the 21st century in China, J. Geophys. Res. Atmos., 118, 119, doi:10.1002/jgrd.50851.
  • Liao, Y., Q. Zhang, and D. Chen (2004), Stochastic modeling of daily precipitation in China, J. Geogr. Sci., 14(4), 417426.
  • Min, S. K., X. Zhang, F. W. Zwiers, and G. C. Hegerl (2011), Human contribution to more-intense precipitation extremes, Nature, 470, 378381.
  • Moss, R. H., et al. (2010), The next generation of scenarios for climate change research and assessment, Nature, 463, 747756, doi:10.1038/nature08823.
  • Osborn, T. J., and M. Hulme (1997), Development of a relationship between station and grid-box rainday frequencies for climate model evaluation, J. Clim., 10, 18851908.
  • Ou, T., D. Chen, H. W. Linderholm, and J.-H. Jeong (2013), Evaluation of global climate models in simulating extreme precipitation in China, Tellus Ser. A, 65, 19,799, doi:10.3402/tellusa.v65i0.19799.
  • Qian, W., and X. Lin (2005), Regional trends in recent precipitation indices in China, Meteorol. Atmos. Phys., 90(3–4), 193207.
  • Richardson, C. W. (1981), Stochastic simulation of daily precipitation, temperature, and solar radiation, Water Resour. Res., 17, 182190.
  • Richardson, C. W., and D. A. Wright (1984), WGEN: A model for generating daily weather variables (ARS-8), U.S. Department of Agriculture.
  • Rosenzweig, C., A. Iglesias, X. B. Yang, P. R. Epstein, and E. Chivian (2001), Climate change and extreme weather events—Implications for food production, plant diseases, and pests, Global Change Hum. Health, 2(2), 90104.
  • Semenov, M. A. (2008), Simulation of extreme weather events by a stochastic weather generator, Climate Res., 35, 203212, doi:10.3354/cr00731.
  • Sillmann, J., and E. Roeckner (2008), Indices for extreme events in projections of anthropogenic climate change, Clim. Change, 86, 83104.
  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh (2013), Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections, J. Geophys. Res.. Atmos., 118, 24732493.
  • Singh, V. P. (1997), Effect of spatial and temporal variability in rainfall and watershed characteristics on stream flow hydrograph, Hydrol. Processes, 11, 16491669.
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl (2012), An overview of CMIP5 and the experiment design, Bull. Am. Meteorol. Soc., 93, 485498.
  • Tebaldi, C., and R. Knutti (2007), The use of the multi-model ensemble in probabilistic climate projections, Philos. Trans. Royal Soc. A, 365, 20532075, doi:10.1098/rsta.2007.2076.
  • Wang, Z.-F., and Y.-F. Qiang (2009), Frequency and intensity of extreme precipitation events in China, Adv. Water Sci., 20(1), 19 (In Chinese).
  • Wang, Y., and L. Zhou (2005), Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation, Geophys. Res. Lett., 32, L09707, doi:10.1029/2005GL022574.
  • Wang, X. L., H. Chen, Y. Wu, Y. Feng, and Q. Pu (2010), New techniques for the detection and adjustment of shifts in daily precipitation data series, J. Appl. Meteorol. Climatol., 49, 24162436.
  • Wilby, R. L., and T. M. L. Wigley (1997), Downscaling general circulation model output: A review of methods and limitations, Progr. Phys. Geogr., 21(4), 530548.
  • Wilks, D. S. (1999), Multisite downscaling of daily precipitation with a stochastic weather generator, Climate Res., 11, 125136.
  • Wilks, D. S., and R. L. Wilby (1999), The weather generation game: A review of stochastic weather models, Progr. Phys. Geogr., 23(3), 329357.
  • Xu, C.-H., and Y. Xu (2012), The projections of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble, Atmos. Oceanic Sci. Lett., 5(6), 527533.
  • Xu, Y., X. Huang, Y. Zhan, W. Lin, and E. Lin (2006), Statistical analyses of climate change scenarios over China in the 21st century, Adv. Clim. Change Res., 2, 5053.
  • Zhai, P., C. Wang, and W. Li (2007), A review on study of change in precipitation extremes, Adv. Clim. Change Res., 3(3), 144148 (In Chinese).
  • Zhang, X. C. (2005), Spatial downscaling of global climate model output for site-specific assessment of crop production and soil erosion, Agr. Forest. Meteorol., 135, 215229.
  • Zhang, Y., Y. Xu, W. Dong, L. Cao, and M. Sparrow (2006), A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model, Geophy. Res. Lett., 33, L24702, doi:10.1029/2006GL027229.
  • Zhang, L., M. Dong, and T. Wu (2011), Changes in precipitation extremes over Eastern China simulated by the Beijing Climate Center Climate System Model (BCC_CSM1.0), Climate Res., 50, 227245.
  • Zhang, L., T. Wu, X. Xin, M. Dong, and Z. Wang (2012a), Projections of annual mean air temperature and precipitation over the globe and in China during the 21st century by the BCC Climate System Model BCC_CSM1.0, Acta Meteorol. Sin., 26(3), 362375.
  • Zhang, Q., M. Gemmer, and J. Chen (2008), Climate changes and flood/drought risk in the Yangtze Delta, China, during the past millennium, Quatern. Internat., 176–177, 6269.
  • Zhang, Q., V. P. Singh, J. Li, and X. Chen (2011), Analysis of the periods of maximum consecutive wet days in China, J. Geophys. Res., 116, D23106, doi:10.1029/2011JD016088.
  • Zhang, Q., J. Li, V. P. Singh, and C.-Y. Xu (2012b), Copula-based spatio-temporal patterns of precipitation extremes in China, Int. J. Climatol., 33(5), 11401152.
  • Zhang, Q., P. Sun, V. P. Singh, and X. Chen (2012c), Spatial-temporal precipitation changes (1956–2000) and their implications for agriculture in China, Global Planet. Change, 82–83, 8695.
  • Zolina, O., C. Simmer, S. K. Gulev, and S. Kollet (2010), Changing structure of European precipitation: Longer wet periods leading to more abundant rainfalls, Geophys. Res. Lett., 37, L06704, doi:10.1029/2010GL042468.