SEARCH

SEARCH BY CITATION

References

  • Acker, K., W. Wieprecht, D. Kalass, D. Möller, and P. Chaloupecky (2010), Relationship between liquid water content and visibility in low clouds occurred at Mt. Brocken, International Aerosol Conference (IAC), Helsinki.
  • Arends, B. G., G. P. A. Kos, W. Wobrock, D. Schell, K. J. Noone, S. Fuzzi, and S. Pahl (1992), Comparison of techniques for measurements of fog liquid water content, Tellus, 44B, 604611.
  • American Meteorological Society (AMS) (2013), Glossary of meteorology, Available at (http://glossary.ametsoc.org).
  • Benjamin, S. G., et al. (2004), An hourly assimilation–forecast cycle: The RUC, Mon. Weather Rev., 132, 495518.
  • Chwala, C., et al. (2012), Precipitation observation using microwave backhaul links in the alpine and pre-alpine region of Southern Germany, Hydrol. Earth Syst. Sci., 16, 26472661, doi:10.5194/hess-16-2647-2012.
  • Chwala, C., H. Kunstmann, S. Hipp, and U. Siart (2013), A monostatic microwave transmission experiment for line integrated precipitation and humidity remote sensing, Atmos. Res., doi:10.1016/j.atmosres.2013.05.014.
  • Croft, P. J., D. Darbe, and J. Garmon (1995), Forecasting significant fog in southern Alabama, Nat. Weather Dig., 19, 1016.
  • Csurgai-Horváth, L., and J. Bitó (2010), Fog attenuation on V band terrestrial radio and a low-cost measurement setup, in Future Network and Mobile Summit, 2010, IEEE.
  • Dam, D. A., and X. C. Hoang (2008), Nguyen T.K.O. Photochemical smog introduction and episode selection for the ground-level ozone in Hanoi, Vietnam, VNU Journal of Science, Earth Sci. Rev., 24, 169175.
  • David, N., P. Alpert, and H. Messer (2009), Technical note: Novel method for water vapour monitoring using wireless communication networks measurements, Atmos. Chem. Phys., 9, 24132418.
  • David, N., P. Alpert, and H. Messer (2011), Humidity measurements using commercial microwave links, advanced trends in wireless communications, InTech publications, Croatia, 65–78.
  • David, N., P. Alpert, and H. Messer (2013), The potential of cellular network infrastructures for sudden rainfall monitoring in dry climate regions, Atmos. Res., 131, 1321, doi:10.1016/j.atmosres.2013.01.004.
  • Dawson, T. E. (1998), Fog in the California redwood forest: Ecosystem inputs and use by plants, Oecologia, 117, 476485.
  • Ellrod, G. P. (1995), Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery, Wea. Forecast., 10, 606619.
  • Emert, S. E. (2001), Design, construction and evaluation of the CSU optical fog detector, M.Sc thesis, Colorado State University, Fort Collins, Colorado.
  • Fabry, F. (2006), The spatial variability of moisture in the boundary layer and its effect on convection initiation: Project-long characterization, Mon. Weather Rev., 134, 7991, doi:10.1175/MWR3055.1.
  • Frenzel, L. E. (2013), Millimeter waves will expand the wireless future, Electron. Des. Mag., 61(4), 3036.
  • Gerber, H. (1984), Liquid water content of fogs and hazes from visible light scattering, J. Climate Appl. Meteorol., 23, 12471252.
  • Goldshtein, O., H. Messer, and A. Zinevich (2009), Rain rate estimation using measurements from commercial telecommunications links, IEEE Trans. Signal Process., 57, 16161625.
  • Gultepe, I., and G. A. Isaac (2004), Aircraft observations of cloud droplet number concentration: Implications for climate studies, Q. J. R. Meteorol. Soc., 130, 23772390.
  • Gultepe, I., M. D. Müller, and Z. Boybeyi (2006), A new visibility parameterization for warm-fog applications in numerical weather prediction models, J. Appl. Meteorol. Climatol., 45, 14691480.
  • Gultepe, I., et al. (2007), Fog research a review of past achievements and future perspectives, Pure Appl. Geophys., 164, 11211159.
  • Gultepe, I., G. Pearson, J. A. Milbrandt, B. Hansen, S. Platnick, P. Taylor, M. Gordon, J. P. Oakley, and S. G. Cober (2009), The fog remote sensing and modeling field project, Bull. Am. Meteorol. Soc., 90(3), 341359.
  • Herckes, P., H. Chang, T. Lee, and J. L. Collet (2007), Air pollution processing by radiation fogs, Water Air Soil Pollut., 181, 6575.
  • Kenney, J. F., and E. S. Keeping (1962), Linear Regression and Correlation, pp. 252285, Van Nostrand Publishers, Princeton, N.J.
  • Klemm, O., T. Wrzesinsky, and C. Scheer (2005), Fog water flux at a canopy top: Direct measurement versus one-dimensional model, Atmos. Environ., 39, 53755386.
  • Klemm, O., et al. (2012), Fog as a fresh-water resource: Overview and perspectives, Ambio, 41, 221234.
  • Ku, H. H. (1966), Notes on the use of propagation of error formulas, J. Res. Nbs. C. Eng. Inst., 70, 263273.
  • Kunkel, B. (1984), Parameterization of droplet terminal velocity and extinction coefficient in fog models, J. Appl. Meteorol. Climatol., 23, 3441.
  • Leijnse, H., R. Uijlenhoet, and J. Stricker (2007a), Rainfall measurement using radio links from cellular communication networks, Water Resour. Res., 43, W03201, doi:10.1029/2006WR005631.
  • Leijnse, H., R. Uijlenhoet, and J. Stricker (2007b), Hydrometeorological application of a microwave link: 1. Evaporation, Water Resour. Res., 43, W04416, doi:10.1029/2006WR004988.
  • Leijnse, H., R. Uijlenhoet, and J. Stricker (2008), Microwave link rainfall estimation: Effects of link length and frequency, temporal sampling, power resolution and wet antenna attenuation, Adv. Water Resour., 31, 14811493, doi:10.1016/j.advwatres.2008.03.004.
  • Lensky, I. M., and D. Rosenfeld (2008), Clouds-aerosols-precipitation satellite analysis tool (CAPSAT), Atmos. Chem. Phys., 8, 67396753, doi:10.5194/acp-8-6739-2008.
  • Liebe, H. J., T. Manabe, and G. A. Hufford (1989), Millimeter-wave attenuation and delay rates due to fog/cloud conditions, IEEE T. Antenn. Propag., 37(12), 16171612.
  • Messer, H., A. Zinevich, and P. Alpert (2006), Environmental monitoring by wireless communication networks, Science, 312, 713.
  • Meyer, M. B., J. E. Jiusto, and G. G. Lala (1980), Measurements of visual range and radiation-fog (haze) microphysics, J. Atmos. Sci., 37, 622629.
  • Neter, J., M. H. Kutner, C. Nachtsheim, and W. Wasserman (1996), Applied Linear Statistical Models, 4th ed., pp. 640645, McGraw-Hill/Irwin, Chicago, IL.
  • Niu, S. J., C. S. Lu, L. J. Zhao, J. J. Lu, and J. Yang (2010), Analysis of the microphysical structure of heavy fog using a droplet spectrometer: A case study, Adv. Atmos. Sci., 27(6), 12591275, doi:10.1007/s00376-010-8192-6.
  • Oliver, J. (2004), Fog harvesting: An alternative source of water supply on the West Coast of South Africa, GeoJournal, 61, 203214.
  • Pagowski, M., I. Gultepe, and P. King (2004), Analysis and modeling of an extremely dense fog event in southern Ontario, J. Appl. Meteorol., 43, 316.
  • Pinnick, R. G., D. L. Hoihjelle, G. Fernandez, E. B. Stenmark, J. D. Lindberg, and G. B. Hoidale (1978), Vertical structure in atmospheric fog and haze and its effects on visible and infrared extinction, J. Atmos. Sci., 35, 20202032.
  • Pisano, P. A., L. C. Goodwin, and M. A. Rossetti (2008), U.S. highway crashes in adverse road weather conditions, Proceedings of the 88th Annual American Meteorological Society meeting, New Orleans, L.A., U.S.A., 20–24 January, 1–15.
  • Rayitsfeld, A., R. Samuels, A. Zinevich, U. Hadar, and P. Alpert (2011), Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system, Atmos. Res., 104–105, 119127.
  • Rec. ITU-R P.676-6 (2005), Attenuation by atmospheric gases.
  • Rec. ITU-R P.838-2 (2004), Specific attenuation model for rain for use in prediction methods.
  • Rec. ITU-R P.840-4 (2009), Attenuation due to clouds and fog.
  • Schleiss, M., J. Rieckermann, and A. Berne (2013), Quantification and modeling of wet antenna attenuation for commercial microwave links, IEEE Geosci. Remote Sens. Lett., 10, 11951199.
  • Schwarzenboeck, A., G. Mioche, A. Armetta, A. Herber, and J. F. Gayet (2009), Response of the Nevzorov hot wire probe in clouds dominated by droplet conditions in the drizzle size range, Atmos. Meas. Tech., 2, 779788, doi:10.5194/amt-2-779-2009.
  • Tago, H., H. Kimura, K. Kozawa, and K. Fujie (2006), Long-term observation of fogwater composition at two mountainous sites in Gunma Prefecture, Japan, Water Air Soil Pollut., 175, 375391.
  • Terradellas, E., and T. Bergot (2007), Comparison between two single-column models designed for short-term fog and low-clouds forecasting, Física Tierra, 19, 18920.
  • Tomasi, C., and F. Tampieri (1976), Features of the proportionality coefficient in the relationship between visibility and liquid water content in haze and fog, Atmosphere, 14, 6176.
  • Van Vleck, J. H. (1947), Absorption of microwaves by uncondensed water vapor, Phys. Rev., 71, 425433.
  • Wang, Z., M. Schleiss, J. Jaffrain, A. Berne, and J. Rieckermann (2012), Using Markov switching models to infer dry and rainy periods from telecommunication microwave link signals, Atmos. Meas. Tech., 5, 18471859, doi:10.5194/amt-5-1847-2012.
  • Wells, J. (2009), Faster than fiber: the future of multi-G/s wireless, IEEE Microw. Mag., 10, 104112.
  • Wichmann, H. E., W. Mueller, P. Allhoff, M. Beckmann, N. Bocter, M. J. Csicsaky, M. Jung, B. Molik, and G. Schoeneberg (1989), Health effects during a smog episode in West Germany in 1985, Environ Health Perspect., 79, 8999.
  • World Meteorological Organization (WMO) (2008), Guide to meteorological instruments and methods of observation, 7th ed., ISBN 978-92-63-10008-5.
  • Wrzesinsky, T., and O. Klemm (2000), Summertime fog chemistry at a mountainous site in central Europe, Atmos. Environ., 34, 14871496.
  • Zinevich, A., P. Alpert, and H. Messer (2008), Estimation of rainfall fields using commercial microwave communication networks of variable density, Adv. Water Resour., 31, 14701480.
  • Zinevich, A., H. Messer, and P. Alpert (2009), Frontal rainfall observation by a commercial microwave communication network, J. Appl. Meteorol. Climatol., 48, 13171334.
  • Zinevich, A., H. Messer, and P. Alpert (2010), Prediction of rainfall intensity measurement errors using commercial microwave communication links, Atmos. Meas. Tech., 3, 13851402.