Altitude dependency of future snow cover changes over Central Japan evaluated by a regional climate model

Authors


Abstract

[1] The Sea of Japan side of Central Japan is one of the heaviest snowfall areas in the world. We investigate near-future snow cover changes on the Sea of Japan side using a regional climate model. We perform the pseudo global warming (PGW) downscaling based on the five global climate models (GCMs). The changes in snow cover strongly depend on the elevation; decrease in the ratios of snow cover is larger in the lower elevations. The decrease ratios of the maximum accumulated snowfall in the short term, such as 1 day, are smaller than those in the long term, such as 1 week. We conduct the PGW experiments focusing on specific periods when a 2 K warming at 850 hPa is projected by the individual GCMs (PGW-2K85). The PGW-2K85 experiments show different changes in precipitation, resulting in snow cover changes in spite of similar warming conditions. Simplified sensitivity experiments that assume homogenous warming of the atmosphere (2 K) and the sea surface show that the altitude dependency of snow cover changes is similar to that in the PGW-2K85 experiments, while the uncertainty of changes in the sea surface temperature influences the snow cover changes both in the lower and higher elevations. The decrease in snowfall is, however, underestimated in the simplified sensitivity experiments as compared with the PGW experiments. Most GCMs project an increase in dry static stability and some GCMs project an anticyclonic anomaly over Central Japan, indicating the inhibition of precipitation, including snowfall, in the PGW experiments.

Ancillary