SEARCH

SEARCH BY CITATION

References

  • Adachi, A. S., F. Kimura, H. Kusaka, T. Inoue, and H. Ueda (2012), Comparison of the impact of global climate changes and urbanization on summertime future climate in the Tokyo metropolitan area, J. Appl. Meteorol. Climatol., 51, 14411454, doi:10.1175/JAMC-D-11-0137.1.
  • Allen, M. R., and W. J. Ingram (2002), Constraints on future changes in the hydrological cycle, Nature, 419, 224228.
  • Armstrong, R. L., and E. Brun, Eds. (2008), Snow and Climate: Physical Processes, Surface Energy Exchange and Modeling, 222 pp., Cambridge Univ. Press, Boulder, Cambridge, UK.
  • Brown, R. D., and P. Mote (2009), The response of Northern Hemisphere snow cover to a changing climate, J. Clim., 22, 21242145.
  • Chen, F., and J. Dudhia (2001), Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation, Mon. Weather Rev., 129, 569585.
  • Eichler, T. P., N. Gaggini, and Z. Pan (2013), Impacts of global warming on Northern Hemisphere winter storm tracks in the CMIP5 model suite, J. Geophys. Res. Atmos., 118, 39193932, doi:10.1002/jgrd.50286.
  • Frei, C., C. Schar, D. Luthi, and H. C. Davies (1998), Heavy precipitation processes in a warmer climate, Geophys. Res. Lett., 25, 14311434.
  • Frierson, D. M. W. (2006), Robust increases in midlatitude static stability in simulations of global warming, Geophys. Res. Lett., 33, L24816, doi:10.1029/2006GL027504.
  • Gutmann, E. D., R. M. Rasmussen, C. Liu, K. Ikeda, D. J. Gochis, M. P. Clark, J. Dudhia, and G. Thompson (2012), A comparison of statistical and dynamical downscaling of winter precipitation over complex terrain, J. Clim., 25, 262281.
  • Hara, M., T. Yoshikane, H. Kawase, and F. Kimura (2008), Estimation of the impact of global warming on snow depth in Japan by the pseudo-global-warming method, Hydrol. Res. Lett., 2, 6164, doi:10.3178/hrl.2.61.
  • Hirose, N., and K. Fukudome (2006), Monitoring the Tsushima warm current improves seasonal prediction of the regional snowfall, SOLA, 2, 061063.
  • Honda, M., J. Inoue, and S. Yamane (2009), Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters, Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.
  • Hong, S.-Y., and J.-O. J. Lim (2006), The WRF single-moment microphysics scheme (WSM6), J. Korean Meteorol. Soc., 42, 129151.
  • Hori, M. E., J. Inoue, T. Kikuchi, M. Honda, and Y. Tachibana (2011), Recurrence of intraseasonal cold air outbreak during the 2009/2010 winter in Japan and its ties to the atmospheric condition over the Barents-Kara Sea, SOLA, 7, 2528.
  • Iizuka, S. (2010), Simulations of wintertime precipitation in the vicinity of Japan: Sensitivity to fine-scale distributions of sea surface temperature, J. Geophys. Res., 115, D10107, doi:10.1029/2009JD012576.
  • Ikeda, K., et al. (2010), Simulation of seasonal snowfall over Colorado, Atmos. Res., 97, 462477.
  • Inoue, S., and K. Yokoyama (2003), Estimation of snowfall depth, maximum snow depth, and snow pack environments under global warming in Japan from five sets of predicted data, J. Agric. Meteorol., 59, 227236.
  • Inoue, J., M. E. Hori, and K. Takaya (2012), The role of Barents sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly, J. Clim., 25, 25612568.
  • Ishii, Y., and K. Suzuki (2011), Regional characteristics of variation of snowfall in Japan, J. Jpn. Assoc. Hydrol. Sci., 41, 2737 (in Japanese with an English abstract).
  • Ishizaka, M. (2004), Climatic response of snow depth to recent warmer winter seasons in heavy-snowfall areas in Japan, Ann. Glaciol., 38, 299304.
  • Iyobe, T., K. Kawashima, and K. Izumi (2007), Characteristics of snow-depth distribution in Japan during heavy snowfall of 2005–2006 winter, Seppyo, 69, 4552 (in Japanese with an English abstract).
  • Janjic, Z. I. (1996), The surface layer in the NCEP Eta model, preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354–356.
  • Janjic, Z. I. (2002), Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model, NCEP Office Note, 437, 161.
  • Kain, J. S., and J. M. Fritsch (1993), Convective parameterization for mesoscale models: The Kain-Fritsch scheme, in The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., vol. 46, pp. 165170 , Amer. Meteor. Soc., Boston, MA.
  • Kawase, H., T. Yoshikane, M. Hara, B. Ailikun, F. Kimura, and T. Yasunari (2008), Downscaling of the climatic change in the Mei-yu rainband in East Asia by a pseudo climate simulation method, SOLA, 4, 7376.
  • Kawase, H., T. Yoshikane, M. Hara, F. Kimura, T. Yasunari, B. Ailikun, H. Ueda, and T. Inoue (2009), Intermodel variability of future changes in the Baiu rainband estimated by the pseudo global warming downscaling method, J. Geophys. Res., 114, D24110, doi:10.1029/2009JD011803.
  • Kawase, H., T. Yoshikane, M. Hara, M. Fujita, N. Ishizaki, H. Hatsushika, and F. Kimura (2012), Downscaling of snow cover changes in the late 20th century using a past climate simulation method over Central Japan, SOLA, 8, 6164.
  • Kimura, F., and A. Kitoh (2007), Downscaling by pseudo global warming method, The Final Report of ICCAP, 43–46.
  • Kondo, J. (1994), Mizu Kankyo no Kishogaku (Meteorology of Water Environment), Asakura-Shoten (in Japanese).
  • Koren, V., J. Schaake, K. Mitchell, Q.-Y. Duran, F. Chen, and J. M. Baker (1999), A parameterization of snowpack and frozen ground intended for NCEP weather and climate models, J. Geophys. Res., 104, 19,56919,585.
  • Kusunoki, S., J. Yoshimura, H. Yoshimura, A. Noda, K. Oouchi, and R. Mizuta (2006), Change of Baiu rain band in global warming projection by an atmospheric general circulation model with a 20-km grid size, J. Meteor. Soc. Japan, 84, 581611.
  • Lenderink, G., and E. van Meijgaard (2008), Increase in hourly precipitation extremes beyond expectations from temperature changes, Nat. Geosci., 1, 511514.
  • Liu, C.-H., K. Ikeda, G. Thompson, R. Rasmussen, and J. Dudhia (2011), High-resolution simulations of wintertime precipitation in the Colorado headwaters region: Sensitivity to physics parameterizations, Mon. Weather Rev., 139, 35333553.
  • Matsuura, S., K. Matsuyama, S. Asano, T. Okamoto, and Y. Takeuchi (2005), Fluctuation of the seasonal snowpack in a mountainous area of the heavy-snow district in the warm-temperate zone of Japan, J. Glaciol., 51, 547554.
  • Nakicenovic, N., and R. Swart (Eds) (2000), Special Report on Emissions Scenarios, 570 pp., Cambridge Univ. Press, New York.
  • Park, J., T. Kojiri, and K. Tomosugi (2003), Development of GIS based distributed runoff model for basin wide environmental assessment, J. Jpn. Soc. Hydrol. Water Resour., 16, 541555 (in Japanese with an English abstract).
  • Rangwala, I. (2013), Amplified water vapour feedback at high altitudes during winter, Int. J. Climatol., 33, 897903.
  • Rasmussen, R., et al. (2011), High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate, J. Clim., 24, 30153048.
  • Schär, C., C. Frie, D. Lüthi, and H. C. Davies (1996), Surrogate climate-change scenarios for regional climate models, Geophys. Res. Lett., 23, 669672.
  • Shimizu, M., and O. Abe (2001), Recent fluctuation of snow cover on mountainous areas in Japan, Ann. Glaciol., 32, 97101.
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers (2008), A description of the advanced research WRF version 3, NCAR/TN-475, 113 pp.
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller, and C. Zhenlin (Eds) (2007), Climate Change 2007: The Physical Science Basis, 996 pp., Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USA.
  • Steger, C., S. Kotlarski, T. Jonas, and C. Schär (2012), Alpine snow cover in a changing climate: A regional climate model perspective, Clim. Dyn., 41, 735754, doi:10.1007/s00382-012-1545-3.
  • Suzuki, H. (2006), Long-term changes in snowfall depth and snow cover depth in and around Niigata prefecture from 1927 to 2005: Analysis using data observed at railway stations, Tenki, 53, 185196 (in Japanese with an English summary).
  • Takahashi, G. H., N. N. Ishizaki, H. Kawase, M. Hara, T. Yoshikane, X. Ma, and F. Kimura (2013), Potential impact of sea surface temperature on winter precipitation over the Japan Sea side of Japan: A regional climate modeling study, J. Meteor. Soc. Japan, 91, 471488, doi:10.2151/jmsj.2013-404.
  • Takano, Y., Y. Tachibana, and K. Iwamoto (2008), Influences of large-scale atmospheric circulation and local sea surface temperature on convective activity over the Sea of Japan in December, SOLA, 4(18), 113116.
  • Ulbrich, U., J. Pinto, H. Kupfer, G. Leckebusch, T. Spangehl, and M. Reyers (2008), Changing Northern Hemisphere storm tracks in an ensemble of IPCC climate change simulations, J. Clim., 21, 16691679.
  • Van der Linden, P., and J. F. B. Mitchell (Eds) (2009), ENSEMBLES: Climate Change and Its Impacts at Seasonal, Decadal and Centennial Timescales—Summary of Research and Results From the ENSEMBLES Project, 160 pp., Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, U. K.
  • Yamaguchi, S., O. Abe, S. Nakai, and A. Sato (2011), Recent fluctuations of meteorological and snow conditions in Japanese mountains, Ann. Glaciol., 52, 209215.
  • Yin, J. H. (2005), A consistent poleward shift of the storm tracks in simulations of 21st century climate, Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.
  • Yoshikane, T., M. Hara, X. Ma, H. Kawase, and F. Kimura (2011), Simulated snow water equivalent change between the 1980s and 1990s in the Sea of Japan side area using a regional climate model, J. Meteor. Soc. Japan, 89, 269282.
  • Yoshikane, T., H. Kawase, and F. Kimura (2012), Verification of the performance of the pseudo-global-warming method for future climate changes during June in East Asia, SOLA, 8, 133136, doi:10.2151/sola.2012-033.