SEARCH

SEARCH BY CITATION

References

  • Andrews-Hanna, J. C., et al. (2013), Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry, Science, 339(6120), 675678.
  • Carrier, W. D. (1974), Apollo drill core depth relationships, Moon, 10, 183194.
  • Carrier, W. D., G. R. Olhoeft, and W. Mendell (1991), Physical properties of the lunar surface, in Lunar Sourcebook, pp. 475594, Cambridge Univ. Press, New York.
  • Cohen, B., J. A. Bessler, D. W. Harris, L. Hill, M. S. Hammond, J. M. McDougal, B. J. Morse, C. L. B. Red, and K. W. Kirby (2008), The International Lunar Network (ILN) and the US Anchor Nodes Mission. Update to the LEAG/ILWEG/SRR, 30.
  • Conel, J. E., and J. B. Morton (1975), Interpretation of lunar heat flow data, Moon, 14(2), 263289.
  • Grimm, R. E. (2013), Geophysical constraints on the lunar Procellarum KREEP Terrane, J. Geophys. Res. Planets, 118, 768777, doi:10.1029/2012JE004114.
  • Grott, M., and D. Breuer (2010), On the spatial variability of the Martian elastic lithosphere thickness: Evidence for mantle plumes?, J. Geophys. Res., 115, E03005, doi:10.1029/2009JE003456.
  • Haack, H., K. L. Rasmussen, and P. H. Warren (1990), Effects of regolith/megaregolith insulation on the cooling histories of differentiated asteroids, J. Geophys. Res., 95(B4), 51115124.
  • Hagermann, A., and S. Tanaka (2006), Ejecta deposit thickness, heat flow, and a critical ambiguity on the Moon, Geophys. Res. Lett., 33, L19203, doi:10.1029/2006GL027030.
  • Haskin, L. A. (1998), The imbrium impact event and the thorium distribution at the lunar highlands surface, J. Geophys. Res., 103(E1), 16791689.
  • Heiken, G. H., D. T. Vaniman, and B. M. French (1991), The Lunar Sourcebook: A User's Guide to the Moon, CUP Archive, Cambridge Univ. Press, New York.
  • Hikida, H., and M. A. Wieczorek (2007), Crustal thickness of the Moon: New constraints from gravity inversions using polyhedral shape models, Icarus, 192(1), 150166.
  • Hörz, F., R. Grieve, G. Heiken, P. Spudis, and A. Binder (1991), Lunar Surface Processes. Lunar Sourcebook, pp. 61120, Cambridge Univ. Press, New York.
  • Hubbard, N. J., P. W. Gast, C. Meyer, L. E. Nyquist, C. Shih, and H. Wiesmann (1971), Chemical composition of lunar anorthosites and their parent liquids, Earth Planet. Sci. Lett., 13(1), 7175.
  • Ishihara, Y., S. Goossens, K. Matsumoto, H. Noda, H. Araki, N. Namiki, and S. Sasaki (2009), Crustal thickness of the moon: Implications for farside basin structures, Geophys. Res. Lett., 36, L19202, doi:10.1029/2009GL039708.
  • Jaupart, C., and J. C. Mareschal (2007), Heat flow and thermal structure of the lithosphere, Treatise Geophys., 6, 217251.
  • Jilly, C. E., P. Sharma, A. L. Souchon, J. F. Blanchette-Guertin, J. Flauhaut, and D. A. Kring (2011), Lunar landing sites to explore the extent of KREEP and its significance to key planetary processes. In Lunar and Planetary Institute Science Conference Abstracts, vol. 42, 1270 p.
  • Jolliff, B. L., J. J. Gillis, L. A. Haskin, R. L. Korotev, and M. A. Wieczorek (2000), Major lunar crustal terranes: Surface expressions and crust-mantle origins, J. Geophys. Res., 105(E2), 41974216.
  • Konrad, W., and T. Spohn (1997), Thermal history of the Moon: Implications for an early core dynamo and post-accertional magmatism, Adv. Space Res., 19(10), 15111521.
  • Laneuville, M., M. Wieczorek, D. Breuer, and N. Tosi (2013), Asymmetric thermal evolution of the Moon, J. Geophys. Res. Planets, 118, 14351452, doi:10.1002/jgre.20103.
  • Langseth, M. G., S. J. Keihm, and J. L. Chute (1973), Heat flow experiment. In Apollo17 Preliminary Science Report. NASA publication SP 330, pp. 9.19.24.
  • Langseth, M. G., S. J. Keihm, and K. Peters (1976), Revised lunar heat-flow values. In Lunar and Planetary Science Conference Proceedings, vol. 7, pp. 31433171.
  • Lawrence, D. J., W. C. Feldman, B. L. Barraclough, A. B. Binder, R. C. Elphic, S. Maurice, and D. R. Thomsen (1998), Global elemental maps of the Moon: The Lunar Prospector gamma-ray spectrometer, Science, 281(5382), 14841489.
  • Lognonné, P., J. Gagnepain-Beyneix, and H. Chenet (2003), A new seismic model of the Moon: Implications for structure, thermal evolution and formation of the Moon, Earth Planet. Sci. Lett., 211(1), 2744.
  • Matson, D. L., T. V. Johnson, G. J. Veeder, D. L. Blaney, and A. G. Davies (2001), Upper bound on Io's heat flow, J. Geophys. Res., 106(E12), 33,02133,024.
  • McGetchin, T. R., M. Settle, and J. W. Head (1973), Radial thickness variation in impact crater ejecta: Implications for lunar basin deposits, Earth Planet. Sci. Lett., 20(2), 226236.
  • Metzger, A. E., J. I. Trombka, R. C. Reedy, and J. R. Arnold (1974), Element concentrations from lunar orbital gamma-ray measurements, Lunar Planet. Sci. Conf. Proc., 5, 10671078.
  • Meyer, C. (2010) The lunar sample compendium, http://curator.jsc.nasa.gov/lunar/lsc/index.cfm.
  • Neal, C. R., W. B. Banerdt, and L. Alkalai (2010), LUNETTE: Establishing a lunar geophysical network without nuclear power through a discovery-class mission. Lunar and Planetary Institute Science Conference Abstracts, vol. 41, 2710 p.
  • Paige, D. A., et al. (2010a), The lunar reconnaissance orbiter Diviner Lunar Radiometer experiment, Space Sci. Rev., 150(1-4), 125160.
  • Paige, D. A., et al. (2010b), Diviner Lunar Radiometer observations of cold traps in the Moon's south polar region, Science, 330(6003), 479482.
  • Paige, D. A., M. A. Siegler, and A. R. Vasavada (2010c), Constraints on lunar heat flow rates from Diviner Lunar Radiometer polar observations. AGU Fall Meeting Abstracts, vol. 1, p. 04.
  • Rasmussen, K. L., and P. H. Warren (1985), Megaregolith thickness, heat flow, and the bulk composition of the Moon, Nature, 313, 121124, doi:10.1038/313121a0.
  • Ringwood, A. E. (1986), Terrestrial origin of the Moon, Nature, 322, 323328, doi:10.1038/322323a0.
  • Ringwood, A. E., and S. E. Kesson (1976), A dynamic model for mare basalt petrogenesis. In Lunar and Planetary Science Conference Proceedings, vol. 7, pp. 16971722.
  • Ryder, G. (1994), Coincidence in time of the Imbrium basin impact and Apollo 15 KREEP volcanic flows: The case for impact-induced melting. In Lunar and Planetary Institute Technical Report, vol. 1.
  • Ryder, G., and J. A. Wood (1977), Serenitatis and Imbrium impact melts—Implications for large-scale layering in the lunar crust. In Lunar and Planetary Science Conference Proceedings, vol. 8, pp. 655668.
  • Saito, Y., S. Tanaka, J. Takita, K. Horai, and A. Hagermann (2007), Lost Apollo heat flow data suggest a different lunar bulk composition.
  • Saito, Y., S. Tanaka, K. Horai, and A. Hagermann (2008), The long term temperature variation in the lunar subsurface.
  • Shoshany, Y., D. Prialnik, and M. Podolak (2002), Monte Carlo modeling of the thermal conductivity of porous cometary ice, Icarus, 157(1), 219227.
  • Siegler M. A., D. A. Paige, J-P Williams, and S. Smrekar (2012), The lowest temperatures on the Moon: What can we learn? NASA lunar science institute forum, Mountain View, CA.
  • Smoluchowski, R. (1981), Amorphous ice and the behavior of cometary nuclei, Astrophys. J., 244, L31L34.
  • Solomon, S. C., and J. W. Head (1980), Lunar mascon basins: Lava filling, tectonics, and evolution of the lithosphere, Rev. Geophys., 18(1), 107141.
  • Spencer, J. R., C. J. A. Howett, A. Verbiscer, T. A. Hurford, M. Segura, and D. C. Spencer (2013), Enceladus heat flow from high spatial resolution thermal emission observations. European Planetary Science Congress, vol. 8, EPSC2013-840-1.
  • Spudis, P., and C. Pieters (1991), Global and regional data about the Moon, in Lunar Sourcebook: A User's Guide to the Moon, pp. 595632, Cambridge Univ. Press, New York.
  • Spudis, P. D. (1978). Composition and origin of the Apennine Bench Formation. In Lunar and Planetary Science Conference Proceedings, vol. 9, pp. 33793394).
  • Spudis, P. D., G. A. Swann, and R. Greeley (1988), The formation of Hadley Rille and implications for the geology of the Apollo 15 region. In Lunar and Planetary Science Conference Proceedings, vol. 18, pp. 243254.
  • Thomson, B. J., E. B. Grosfils, D. B. J. Bussey, and P. D. Spudis (2009), A new technique for estimating the thickness of mare basalts in Imbrium basin, Geophys. Res. Lett., 36, L12201, doi:10.1029/2009GL037600.
  • Toksöz, M. N., A. T. Hsui, and D. J. Johnston (1978), Thermal evolutions of the terrestrial planets, Moon Planets, 18(3), 281320.
  • Turcotte, D. L., and G. Schubert (2002), Geodynamics, chap. 4, Cambridge Univ. Press, New York.
  • Warren, P. H. (2001), Compositional structure within the lunar crust as constrained by Lunar Prospector thorium data, Geophys. Res. Lett., 28(13), 25652568.
  • Warren, P. H., and J. T. Wasson (1979), The origin of KREEP, Rev. Geophys., 17(1), 7388.
  • Warren, P. H., and K. L. Rasmussen (1987), Megaregolith insulation, internal temperatures, and bulk uranium content of the Moon, J. Geophys. Res., 92(B5), 34533465.
  • Wieczorek, M. A., and M. T. Zuber (2001), The composition and origin of the lunar crust: Constraints from central peaks and crustal thickness modeling, Geophys. Res. Lett., 28(21), 40234026.
  • Wieczorek, M. A., and R. J. Phillips (1998), Potential anomalies on a sphere: Applications to the thickness of the lunar crust, J. Geophys. Res., 103(E1), 17151724.
  • Wieczorek, M. A., and R. J. Phillips (2000), The “Procellarum KREEP Terrane”: Implications for mare volcanism and lunar evolution, J. Geophys. Res., 105(E8), 20,41720,430.
  • Wieczorek, M. A., et al. (2013), The crust of the Moon as seen by GRAIL, Science, 339(6120), 671675.
  • Zhang, N., E. M. Parmentier, and Y. Liang (2013), Effects of lunar cumulate mantle overturn and megaregolith on the expansion and contraction history of the Moon, Geol. Res. Lett., 40, 50195023, doi:10.1002/grl.50988.
  • Zhong, S., E. M. Parmentier, and M. T. Zuber (2000), A dynamic origin for the global asymmetry of lunar mare basalts, Earth Planet. Sci. Lett., 177(3), 131140.
  • Zuber, M. T., et al. (2013), Gravity field of the Moon from the Gravity Recovery And Interior Laboratory (GRAIL) mission, Science, 339(6120), 668671.