SEARCH

SEARCH BY CITATION

References

  • Agee, C. B., et al. (2013), Unique meteorite from early Amazonian Mars: Water-rich basaltic breccia Northwest Africa 7034, Science, 339, 780785.
  • Anderson, R. B., and J. F. Bell (2010), Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site, Mars, 5, 76128, doi:10.1555/mars.2010.0004.
  • Arai, S., K. Matsukage, E. Isobe, and S. Ysotskiy (1997), Concentration of incompatible elements in oceanic mantle: Effect of melt/wall interaction in stagnant or failed melt conduits within peridotite, Geochim. Cosmochim. Acta, 61, 671675.
  • Bailey, D. K. (1982), Mantle metasomatism-continuing chemical change within the Earth, Nature, 296, 525530.
  • Beard, J. S., and G. E. Lofgren (1991), Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kbar, J. Petrol., 32, 365401.
  • Berger, J. A., P. L. King, R. Gellert, J. L. Campbell, N. Boyd, I. Pradler, and G. M. Perrett, APXS and MSL Science Teams (2013), MSL titanium observation tray measurements with APXS Lunar and Planet. Sci. Con. 44, abs. 1321.
  • Blake, D. F., et al. (2013), Curiosity at Gale crater, Mars: Characterization and analysis of the Rocknest sand shadow, Science, 341, doi:10.1126/science.1239505.
  • Blaney, D. L., et al. (2013), Assessment of potential rock coatings at Rocknest, Gale Crater with ChemCam, Lunar Planet. Sci. Con. 44, abs# 1568.
  • Borg, L. E., and D. S. Draper (2003), A petrogenetic model for the origin and compositional variation of the Martian basaltic meteorites, Meteorit. Planet. Sci., 38, 17131731.
  • Borg, L. E., L. E. Nyquist, H. Wiesmann, C.-Y. Shih, and Y. Reese (2003), The age of Dar al Gani 476 and the differentiation history of the Martian meteorites inferred from their radiogenic isotopic systematics, Geochim. Cosmochim. Acta, 67, 35193536.
  • Brückner, J., G. Dreibus, R. Rieder, and H. Wänke (2003), Refined data of Alpha Proton X-ray Spectrometer analyses of soils and rocks at the Mars Pathfinder site: Implications for surface chemistry, J. Geophys. Res., 108(E12), 8094, doi:10.1029/2003JE002060.
  • Calef, F. J., III et al. (2013), Geologic mapping of the Mars Science Laboratory landing ellipse. Lunar Planetary Science Convention 44, abs. #2511.
  • Campbell, J. L. (2012), The instrumental blank of the Mars Science Laboratory alpha particle X-ray spectrometer, Nucl. Instrum. Methods Phys. Res., Sect. B, 288, 102110.
  • Campbell, J. L., G. M. Perrett, R. Gellert, S. M. Andrushenko, N. L. Boyd, J. A. Maxwell, P. L. King, and C. D. M. Schofield (2012), Calibration of the Mars Science Laboratory Alpha Particle X-ray Spectrometer, Space Sci. Rev., 170, 319340.
  • Campbell, J. L., J. A. Berger, R. Gellert, P. L. King, G. M. Perret, N. I. Boyd, K. S. Edgett, R. A. Yingst, and MSL Science Team (2013), First measurements of the MSL APXS calibration target on Mars. Lunar Planet. Sci. Con. 44, abs. #1506.
  • Chan, M. A., W. T. Parry, and J. R. Bowman (2000), Diagenetic hematite and manganese oxides and fault-related fluid flow in Jurassic sandsones, southeastern Utah, AAPG Bull., 84, 12811310.
  • Clegg, S. M., E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens (2009), Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques, Spectrochim. Acta Part B, 64, 7988.
  • Debaille, V., Q.-Z. Yin, A. D. Brandon, and B. Jacobsen (2008), Martian mantle mineralogy investigated by the 176Lu–176Hf and 147Sm–143Nd systematics of shergottites, Earth Planet. Sci. Lett., 269, 186199.
  • Debaille, V., A. D. Brandon, C. O'Neill, Q. Z. Yin, and B. Jacobsen (2009), Early Martian mantle overturn inferred from isotopic composition of nakhlite meteorites, Nat. Geosci., 2, 548552.
  • Dixon, J. C., C. E. Thorn, R. G. Darmody, and S. W. Campbell (2002), Weathering rinds and rock coating from an arctic alpine environment, northern Scandinavia, GSA Bull., 114, 226238.
  • Dreibus, G., and H. Wänke (1985), Mars, a volatile-rich planet, Meteoritics, 20, 367381.
  • Edgett, K. S., et al. (2012), Curiosity's Mars Hand Lens Imager (MAHLI) investigation, Space Sci. Rev., 170, 259317.
  • Filiberto, J., and A. H. Treiman (2009), Martian magmas contained abundant chlorine, but little water, Geology, 37, 10871090.
  • Forni, O., S. Maurice, O. Gasnault, R. C. Wiens, A. Cousin, S. M. Clegg, J.-B. Sirven, and J. Lasue (2013), Independent component analysis classification of laser induced breakdown spectroscopy spectra, Spectrochim. Acta Part B, doi:10.1016/j.sab.2013.05.003.
  • Frost, B. R., and C. D. Frost (2008), A geochemical classification for feldspathic igneous rocks, J. Petrol., 49, 19551969, doi:10.1093/petrology/egn054.
  • Gellert, R., et al. (2006), Alpha Particle X-ray Spectrometer (APXS): Results from Gusev crater and calibration report, J. Geophys. Res., 111, E02S05, doi:10.1029/2005JE002555.
  • Gellert, R., et al. (2013) Initial MSL APXS activities and observations at Gale Crater, Mars. Lunar Planet. Sci. Con. 44 Abs. #1432.
  • Goodrich, C. A., A. H. Treiman, J. Filiberto, J. Gross, and M. J. Jercinovic (2012), K-rich melt from the Martian mantle? Lunar and Planetary Science 43rd, Abs.# 1276.
  • Goodrich, C. A., A. H. Treiman, J. Filiberto, J. Gross, and M. Jercinovic (2013), K2O-rich trapped melt in olivine in the Nakhla meteorite: Implications for the petrogenesis of nakhlites and differentiation of the Martian mantle, Meteorit. Planet. Sci., 48, 23712405.
  • Grotzinger, J. P., and R. E. Milliken (2012), The sedimentary rock record of Mars: Distribution, origins, and global stratigraphy, in Sedimentary Geology of Mars, edited by J. P. Grotzinger and R. E. Milliken, pp. 148, SEPM Special Paper, Tulsa, Okla.
  • Grotzinger, J. P., et al. (2012), Mars Science Laboratory mission and science investigation, Space Sci. Rev., 170, 556.
  • Grotzinger, J. P., et al. (2013), A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars, Science, doi:10.1126/science.1242777.
  • Halliday, A. N., H. Wänke, J.-L. Birck, and R. N. Clayton (2001), The accretion, composition and early differentiation of Mars, Space Sci. Rev., 96, 197230.
  • Harri, A.-M., et al. (2013), Mars Science Laboratory (MSL)—First results of pressure and humidity observations. Lunar Planet. Sci. Con. 44, abs#1482.
  • Herd, C. D. K., L. E. Borg, J. H. Jones, and J. J. Papike (2002), Oxygen fugacity and geochemical variations in the Martian basalts: Implications for Martian basalt petrogenesis and the oxidation state of the upper mantle of Mars, Geochim. Cosmochim. Acta, 66, 20252036.
  • Hurowitz, J. A., S. M. McLennan, N. J. Tosca, R. E. Arvidson, J. R. Michalski, D. W. Ming, C. Schröder, and S. W. Squyres (2006), In situ and experimental evidence for acidic weathering of rocks and soils on Mars, J. Geophys. Res., 111, E02S19, doi:10.1029/2005JE002515.
  • Jones, J. H. (2003), Constraints on the structure of the Martian interior determined from the chemical and isotopic systematics of SNC meteorites, Meteorit. Planet. Sci., 38, 18071814.
  • Kawabata, H., T. Hanyu, Q. Chang, J.-I. Kimura, R. L. Nichols, and Y. Tatsumi (2011), The petrology and geochemistry of St. Helena alkali basalts: Evaluation of the oceanic crust-recycling model for HIMU OIB, J. Petrol., 52, 791838.
  • Kerber, L., J. W. Head, J.-B. Madeleine, F. Forget, and L. Wilson (2011), The dispersal of pyroclasts from Apollinaris Patera, Mars: Implications for the origin of the Medusae Fossae Formation, Icarus, 216, 212220.
  • Lanza, N. L., et al. (2013), Evidence for rock surface alteration with ChemCam from Curiosity's first 90 sols. Lunar Planet. Sci. Con. 44, abs. #1723.
  • Lasue, J., et al. (2013), Partial least squares sensitivity analysis and improvements for ChemCam LIBS data analysis on Mars. Lunar Planet. Sci. Con. 44, abs. #2230.
  • Le Bas, M. J., R. W. Le Maitre, A. Streckeisen, and B. Zanettin (1986), A chemical classification of volcanic rocks based on the total alkali-silica diagram, J. Petrol., 27, 745750.
  • Leshin, L. A., et al. (2013), The first volatile, isotope, and organic analysis of solid samples with the Mars Curiosity Rover: Insights into Martian Fines, Science, 341, doi:10.1126/science.1238937.
  • Lodders, K., and B. Fegley Jr. (1997), An oxygen isotope model for the composition of Mars, Icarus, 126, 373394.
  • Maurice, S., et al. (2012), The ChemCam instrument suite on the Mars Science Laboratory (MSL) Rover: Science objectives and mast unit description, Space Sci. Rev., 170, 95166, doi:10.1007/s11214-012-9912-2.
  • McCubbin, F. M., S. M. Elardo, C. K. Shearer, A. Smirnov, E. H. Hauri, and D. S. Draper (2013), A petrogenetic model for the comagmatic origin of chassignites and nakhlites: Inferences from chlorine-rich minerals, petrology, and geochemistry, Meteorit. Planet. Sci., 48, 819853.
  • McLennan, S. M., et al. (2013), Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale Crater, Mars, Science, doi:10.1126/science.1244734.
  • McSween, H. Y., Jr., G. J. Taylor, and M. B. Wyatt (2009), Elemental composition of the Martian crust, Science, 324, 736739.
  • Meslin, P. Y., et al. (2013), Soil diversity and hydration as observed by ChemCam at Gale Crater, Mars, Science, 341, doi:10.1126/science.1238670.
  • Meyer, C. (2013), The Martian Meteorite Compendium, http://curator.jsc.nasa.gov/antmet/mmc/index.cfm.
  • Mezger, K., V. Debaille, and T. Kleine (2013), Core and mantle differentiation on Mars, Space Sci. Rev., 174, 2748.
  • Milliken, R. E., J. P. Grotzinger, and B. J. Thomson (2010), Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater, Geophys. Res. Lett., 37, L04201, doi:10.1029/2009GL041870.
  • Ming, D. W., et al. (2008), Geochemical properties of rocks and soils in Gusev crater, Mars: Results of the Alpha Particle X-ray Spectrometer from Cumberland Ridge to Home Plate, J. Geophys. Res., 113, E12S39, doi:10.1029/2008JE003195.
  • Minitti, M. E., et al. (2013), Mars Hand Lens Imager (MAHLI) observations of rocks at Curiosity's field site, sols 0–100 Lunar Planet. Sci. Con. 44 Abs. #2186.
  • Morford, J. L., and S. Emerson (1999), The geochemistry of redox sensitive trace metals in sediments, Geochim. Cosmochim. Acta, 63, 17351750.
  • Morris, R. V., et al. (2008), Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover, J. Geophys. Res., 113, E12S42, doi:10.1029/2008JE003201.
  • Nekvasil, H., A. Dondolini, J. Horn, J. Filiberto, H. Long, and D. H. Lindsley (2004), The origin and evolution of silica-saturated alkalic suites: An experimental study, J. Petrol., 45, 693721.
  • Nesbitt, H. W., and R. E. Wilson (1992), Recent chemical weathering of basalts, Am. J. Sci., 292, 740777.
  • Ollila, A. M., et al. (2013a), Early results from Gale Crater on ChemCam detections of carbon, lithium, and rubidium Lunar Planet. Sci. Con. 44, Abs. #2188.
  • Ollila, A., et al. (2013b), Modeling of minor and trace elements (Li, Ba, Sr, Rb, Mn, and C) using Curiosity's ChemCam and early results for Gale Crater from Bradbury Landing to Rocknest, J. Geophys. Res. Planets, 119, 255285, doi:10.1002/2013JE004517.
  • Palucis, M. C., W. E. Dietrich, A. Hayes, R. M. E. Williams, F. Calef, D. Y. Sumner, S. Gupta, C. Hardgrove, and MSL Science Team (2013), Origin and evolution of the Peace Vallis Fan system that drains the Curiosity landing area, Gale Crater Lunar Planet. Sci. Con. 44 Abs. #1607.
  • Pilet, S., M. B. Baker, and E. S. Stolper (2008), Metasomatized lithosphere and the origin of alkaline lavas, Science, 320, 916919.
  • Reiners, P. W. (1998), Reactive melt transport in the mantle and geochemical signatures of mantle-derived magmas, J. Petrol., 39, 10391061.
  • Rice, M. S., J. M. Williams, F. Calef, R. B. Anderson, L. Edgar, K. Stack, D. Y. Sumner, H. E. Newsom, J. P. Grotzinger, and P. King (2013), Detailed geologic mapping along the Mars Science Laboratory (MSL) Curiosity traverse path from Glenelg to Mount Sharp. Lunar Planetary Science Conference 44, abs. #2892.
  • Rieder, R., et al. (2004), Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer, Science, 306, 17461749.
  • Righter, K., K. Pando, and L. R. Danielson (2009), Experimental evidence for sulfur-rich Martian magmas: Implications for volcanism and surficial sulfur sources, Earth Planet. Sci. Lett., 288, 235243.
  • Sautter, V. et al. (2014), Igneous mineralogy at Bradbury rise: The first ChemCam campaign, J. Geophys. Res. Planets, 119, 3046, doi:10.1002/2013JE004472.
  • Schmeling, H. (2000), Partial melting and melt segregation in a convecting mantle in Bagdassrov, N.S., Laporte, D., Thompson, A.B., eds. Physics and Chemistry of Partially Molten Rocks, Petrol. Struct. Geol., 111, 141178.
  • Schmidt, M. E., and T. J. McCoy (2010), The evolution of a heterogeneous Martian mantle: Clues from K, P, Ti, Cr, and Ni variations in Gusev basalts and shergottite meteorites, Earth Planet. Sci. Lett., 296, 6777, doi:10.1016/j.epsl.2010.04.046.
  • Schmidt, M. E., et al. (2009), Spectral, mineralogical, and geochemical variations across Home Plate, Gusev Crater, Mars indicate high and low temperature alteration, Earth Planet. Sci. Lett., 281, 258266.
  • Schmidt, M. E., C. M. Schrader, and T. J. McCoy (2013), The primary fO2 of basalts examined by the Spirit Rover in Gusev Crater, Mars: Evidence for multiple redox states in the Martian interior, Earth Planet. Sci. Lett., 384, 198208.
  • Scott, D. H., and M. G. Chapman (1995), Geologic and topographic maps of the Elysium Paleolake Basin, Mars. USGS Misc. Map, I-2397, scale 1:5,000,000.
  • Smith, P. H., et al. (2009), H2O at Phoenix landing site, Science, 325, 5861.
  • Squyres, S. W., et al. (2004a), The Spirit Rover's Athena science investigation at Gusev Crater, Mars, Science, 305, 794799.
  • Squyres, S. W., et al. (2004b), In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars, Science, 306, 17091714.
  • Squyres, S. W., et al. (2006), Rocks of the Columbia Hills, J. Geophys. Res., 111, E02S11, doi:10.1029/2005JE002562.
  • Squyres, S. W., et al. (2012), Ancient impact and aqueous processes at Endeavour Crater, Mars, Science, 336, 570576.
  • Stolper, E. M., et al. (2013), The petrochemistry of Jake_M: A Martian mugearite, Science, 341, doi:10.1126/science.1239463.
  • Sumner, D. Y., et al. (2013), Preliminary geological map of the Peace Vallis Fan integrated with in situ mosaics from the Curiosity Rover, Gale Crater, Mars. Lunar Planetary Science Conference abs. #1699.
  • Sun, S. S., and W. McDonough (1989), Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, Geol. Soc. London Spec. Publ., 42, 313345.
  • Taylor, S. R., and S. M. McLennan (2009), Planetary Crusts: Their Composition, Origin and Evolution, pp. 378, Cambridge Univ. Press, Cambridge.
  • Thompson, L. M., et al. (2013), BT-2 calibration target for the Mars Science Laboratory Alpha Particle X-ray Spectrometer: Characterization and alkali basalt Martian analogue. Lunar Planet. Sci. Con. 44 Abs. #2190.
  • Thomson, B. J., N. T. Bridges, R. Milliken, A. Baldridge, S. J. Hook, J. K. Crowley, G. M. Marion, C. R. de Souza Filho, A. J. Brown, and C. M. Weitz (2011), Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data, Icarus, 214, 413432.
  • Tokar, R. L., et al. (2013), Searching for chemical variation across the surface of “Rocknest_3” using MSL ChemCam spectra. Lunar Planet. Sci. Con. 44 Abs#1283.
  • Treiman, A. H. (2003), Chemical compositions of Martian basalts (shergottites): Some inferences on basalt formation, mantle metasomatism, and differentiation in Mars, Meteorit. Planet. Sci., 38, 18491864.
  • Usui, T., H. Y. McSween Jr., and B. C. Clark III (2008), Petrogenesis of high-phosphorous Wishstone-class rocks in Gusev crater, Mars, J. Geophys. Res., 113, E12S44, doi:10.1029/2008JE003225.
  • Walker, T. R., E. E. Larson, and R. P. Hoblitt (1981), Nature and origin of hematite in the Moenkopi formation (Triassic) Colorado Plateau: A contribution to origin of magnetism in red beds, J. Geophys. Res., 86, 317333.
  • Wänke, H., and G. Dreibus (1988), Chemical composition and accretion history of terrestrial planets, Philos. Trans. R. Soc. London, A325, 545557.
  • Warren, P. H., and J. T. Wasson (1979), The origin of KREEP, Rev. Geophys. Space Phys., 17, 7388.
  • Whitaker, M. L., H. Nekvasi, D. H. Lindsley, and N. J. Difrancesco (2007), The role of pressure in producing compositional diversity in intraplate basaltic magmas, J. Petrol., 48, 365393.
  • Wiens, R. C., et al. (2012), The ChemCam instrument suite on the Mars Science Laboratory (MSL) Rover: Body unit and combined system tests, Space Sci. Rev., 170, 167227.
  • Wiens, R. C., et al. (2013), Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory Rover, Spectrochim. Acta Part B, 82, 127.
  • Williams, R. M. E., et al. (2013), Martian fluvial conglomerates at Gale Grater, Science, 340, 10681072.
  • Yen, A. S., et al. (2005), An integrated view of the chemistry and mineralogy of Martian soils, Nature, 436, 4954.
  • Yen, A. S., et al. (2013), Evidence for a global Martian soil composition extends to Gale Crater. Lunar Planet. Sci. Con. 44 Abs. #2495.
  • Zimbelman, J. R., and S. P. Scheidt (2012), Hesperian Age for Western Medusae Fossae Formation, Mars, Science, 336, 16831683.
  • Zipfel, J., et al. (2011), Bounce Rock—A shergottite-like basalt encountered in Meridiani Planum, Mars, Meteorit. Planet. Sci., 46, 120.