SEARCH

SEARCH BY CITATION

References

  • Agee, C. B., et al. (2013), Unique meteorite from early Amazonian Mars: Water-rich basaltic breccia Northwest Africa 7034, Science, 339, 780785.
  • Alirezaei, S., and J. Hassanzadeh (2012), Geochemistry and zircon geochronology of the Permian A-type Hasanrobat granite Sanandaj-Sirjan belt: A record of the Gondwana break-up in Iran, Lithos, 151, 122134.
  • Anderson, R. B., and J. F. Bell III (2010), Geologic mapping and characterization of Gale crater and implications for its potential as a Mars Science Laboratory landing site, Mars, 5, 76128.
  • Anderson, R. B., R. V. Morris, S. M. Clegg, J. F. Bell III, R. C. Wiens, S. D. Humphries, S. A. Mertzman, T. G. Graff, and R. McInroy (2011), The influence of multivariate analysis methods and target grain size on the accuracy of remote quantitative chemical analysis of rocks using laser-induced breakdown spectroscopy, Icarus, 215, 608627.
  • Anderson, R. B., J. F. Bell III, R. C. Wiens, R. V. Morris, and S. M. Clegg (2012), Clustering and training set selection methods for improving the accuracy of quantitative laser induced breakdown spectroscopy, Spectrochim. Acta B, 70, 2432, doi:10.1016/j.sab.2012.04.004.
  • Anzano, J. M., M. A. Villoria, A. Ruíz-Medina, and R. J. Lasheras (2006), Laser-induced breakdown spectroscopy for quantitative spectrochemical analysis of geological materials: Effects of the matrix and simultaneous determination, Anal. Chim. Acta, 575, 230235.
  • Bandfield, J. L., V. E. Hamilton, P. R. Christensen, and H. Y. McSween Jr. (2004), Identification of quartzofeldspathic materials on Mars, J. Geophys. Res., 109, E10009, doi:10.1029/2004JE002290.
  • Banin, A., F. X. Han, I. Kan, and A. Cicelsky (1997), Acidic volatiles and the Mars soil, J. Geophys. Res., 102, 13,34113,356.
  • Barrat, J.-A., and C. Bollinger (2010), Geochemistry of the Martian meteorite ALH 84001, revisited, Meteorit. Planet. Sci., 45, 495512.
  • Barrat, J.-A., A. Jambon, M. Bohn, P. Gillet, V. Sautter, C. Gopel, M. Lesourd, and F. Keller (2002), Petrology and chemistry of the Picritic Shergottite North West Africa 1068 (NWA 1068), Geochim. et Cosmochim. Acta, 66, 35053518.
  • Beck, P., J. A. Barrat, M. Chaussidon, P. Gillet, and M. Bohn (2004), Li isotopic variations in single pyroxenes from the Northwest Africa 480 shergottite (NWA 480): A record of degassing of Martian magmas?, Geochim. et Cosmochim. Acta, 68, 29252933.
  • Beck, P., M. Chaussidon, J. A. Barrat, P. H. Gillet, and M. Bohn (2006), Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: The case of pyroxene phenocrysts from nakhlite meteorites, Geochim. et Cosmochim. Acta, 70, 48134825.
  • Bish, D. L., et al. (2013), X-ray diffraction results from Mars Science Laboratory: Mineralogy of Rocknest Aeolian bedform at Gale crater, Science, 341, doi:10.1126/science.1238932.
  • Blake, D. F., et al. (2013), Curiosity at Gale crater, Mars: Characterization and analysis of the Rocknest sand shadow, Science, 341, doi:10.1126/science.1239505.
  • Borg, L. E., and D. S. Draper (2003), A petrogenetic model for the origin and compositional variation of the Martian basaltic meteorites, Meteorit. Planet. Sci., 38, 17131731.
  • Borg, L. E., L. E. Nyquist, L. A. Taylor, H. Wiesmann, and C.-Y. Shih (1997), Constraints on Martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE 94201, Geochim. et Cosmochim. Acta, 61, 49154931.
  • Borg, L. E., L. E. Nyquist, H. Wiesmann, and Y. Reese (2002), Constraints on the petrogenesis of Martian meteorites from the Rb-Sr and Sm-Nd isotopic systematics of the lherzolitic shergottites ALH77005 and LEW88516, Geochim. et Cosmochim. Acta, 66, 20372053.
  • Bousquet, B., J.-B. Sirven, and L. Canioni (2007), Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples, Spectrochim. Acta B, 62, 15821589.
  • Bridges, J. C., and M. M. Grady (2000), Evaporite mineral assemblages in the nakhlite (Martian) meteorites, Earth Planet. Sci. Lett., 176, 267279.
  • Brückner, J., G. Dreibus, R. Rieder, and H. Wänke (2003) Refined data of Alpha Proton X-ray Spectrometer analyses of soils and rocks at the Mars Pathfinder site: implications for surface chemistry, J. Geophys. Res., 108(E12), 8094, doi:10.1029/2003JE002060.
  • Bulajic, D., M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni (2002), A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy, Spectrochim. Acta B, 57, 339353.
  • Caffe, P. J., R. B. Trumbull, and W. Siebel (2012), Petrology of the Coyaguayma ignimbrite, northern Puna of Argentina: Origin and evolution of a peraluminous high-SiO2 rhyolite magma, Lithos, 134–135, 179200.
  • Campbell, J. L., M. Lee, B. N. Jones, S. M. Andrushenko, N. G. Holmes, and J. A. Maxwell (2009), A fundamental parameters approach to calibration of the Mars Exploration Rovers alpha-particle X-ray spectrometer, J. Geophys. Res., 114, E04006, doi:10.1029/2008JE003272.
  • Campbell, J. L., S. Andrushenko, S. M. Taylor, and J. A. Maxwell (2010), A fundamental parameters approach to calibration of the Mars Exploration Rovers alpha-particle X-ray spectrometer. Part II. Unknown samples, J. Geophys. Res., 115, E04009, doi:10.1029/2009JE003481.
  • Campbell, J. L., G. M. Perrett, R. Gellert, S. M. Andrushenko, N. I. Boyd, J. A. Maxwell, P. L. King, and C. D. M. Schofield (2012), Calibration of the Mars Science Laboratory alpha particle X-ray spectrometer, Space Sci. Rev., 170, 319340, doi:10.1007/s11214-012-9873-5.
  • Chan, L. H., J. M. Edmond, G. Thompson, and K. Gills (1992), Lithium isotopic composition of submarine basalts: Implications for the lithium cycle in the oceans, Earth Planet. Sci. Lett., 108, 151160.
  • Chennaoui Aoudjehane, H., et al. (2012), Tissint Martian meteorite: A fresh look at the interior surface, and atmosphere of Mars, Science, 338, 785788.
  • Choi, H.-O., S. H. Choi, D.-C. Lee, and H.-C. Kang (2013), Geochemical evolution of basaltic volcanism within the tertiary basins of southeastern Korea and the opening of the East Sea (Sea of Japan), J. Volcanol. Geotherm. Res., 249, 109122.
  • Clark, B. C., and A. K. Baird (1979), Is the Martian lithosphere sulfur rich?, J. Geophys. Res., 84, 83958402.
  • Clark, B. C., and D. C. Van Hart (1981), The salts of Mars, Icarus, 45, 370378.
  • Clark, B. C., A. K. Baird, R. J. Weldon, D. M. Tsusaki, L. Schnabel, and M. P. Candelaria (1982), Chemical composition of Martian fines, J. Geophys. Res., 87, 10,05910,067.
  • Clegg, S. M., R. C. Wiens, J. E. Barefield, E. Sklute, and M. D. Dyar (2009), Quantitative remote laser-induced breakdown spectroscopy by multivariate analysis, Spectrochim. Acta B, 64, 7988.
  • Cousin, A., O. Forni, S. Maurice, O. Gasnault, C. Fabre, V. Sautter, R. C. Wiens, and J. Mazoyer (2011), Laser induced breakdown spectroscopy library for the Martian environment, Spectrochim. Acta B, 66, 805814.
  • Cremers, D. A., and L. J. Radziemski (2006), Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley, Chichester, U.K.
  • Dostal, J., L. Toscani, A. Photiades, and S. Capedri (1991), Geochemistry and petrogenesis of Tethyan ophiolites from northern Argolis (Peloponnesus, Greece), Eur. J. Mineral., 3, 105121.
  • Dyar, M. D., J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane (2010), Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples, Spectrochim. Acta B, 66, 3956, doi:10.1016/j.sab2010.11.016.
  • Dyar, M. D., M. L. Carmosino, E. A. Speicher, M. V. Ozanne, S. M. Clegg, and R. C. Wiens (2012), Comparison of partial least squares and LASSO regression techniques for laser-induced breakdown spectroscopy data of geological samples, Spectrochim. Acta B, 70, 5167, doi:10.1016/j.sab.2012.04.011.
  • Eppler, A. S., D. A. Cremers, D. D. Hickmott, M. J. Ferris, and A. C. Koskelo (1996), Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy, Appl. Spectrosc., 50, 11751181.
  • Essington, M. E., G. V. Melnichenko, M. A. Stewart, and R. A. Hull (2009), Soil metals analysis using laser-induced breakdown spectroscopy (LIBS), SSSAJ, 73, 14691478.
  • Fabre, C., M. C. Boiron, J. Dubessy, A. Chabiron, B. Charoy, and T. M. Crespo (2002), Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: An exploratory study, Geochim. et Cosmochim. Acta, 66, 14011407.
  • Fabre, C., S. Maurice, A. Cousin, R. C. Wiens, O. Forni, V. Sautter, and D. Guillaume (2011), Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument, Spectrochim Acta B, 66, 280289.
  • Filiberto, J., E. Chin, J. M. D. Day, I. A. Franchi, R. C. Greenwood, J. Gross, S. C. Penniston-Dorland, S. P. Schwenzer, and A. H. Treiman (2012), Geochemistry of intermediate olivine-phyric shergottite Northwest Africa 6234, with similarities to basaltic shergottite Northwest Africa 480 and olivine-phyric shergottite Northwest Africa 2990, Meteorit. Planet. Sci., 47, 12561273.
  • Garvie, L. A. J., D. M. Burt, and P. R. Buseck (2008), Nanometer-scale complexity, growth, and diagenesis in desert varnish, Geology, 36, 215218.
  • Gasnault, O., G. J. Taylor, S. Karunatillake, J. Dohm, H. Newsom, O. Forni, P. Pinet, and W. V. Boynton (2010), Quantitative geochemical mapping of Martian elemental provinces, Icarus, 207, 226247.
  • Gast, P. W. (1965), Terrestrial ratio of potassium to rubidium and composition of Earth's mantle, Science, 147, 858860.
  • Gellert, R., et al. (2006), Alpha particle X-ray spectrometer (APXS): Results from Gusev crater and calibration report, J. Geophys. Res., 111 E02S05, doi:10.1029/2005JE002555.
  • Gilg, H. A., B. Weber, J. Kasbohm, and R. Frei (2003), Isotope geochemistry and origin of illite-smectite and kaolinite from the Seilitz and Kemmlitz kaolin deposits Saxony, Germany, Clay Miner., 38, 95112.
  • Griffin, W. L., and V. Rama Murthy (1969), Distribution of K, Rb, Sr and Ba in some minerals relevant to basalt genesis, Geochim. et Cosmochim. Acta, 33, 13891414.
  • Grotzinger, J. P., et al. (2012), Mars Science Laboratory mission and science investigation, Space Sci. Rev., 170, 556, doi:10.1007/s11214-012-9892-2.
  • Grotzinger, J. P., et al. (2013), A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars, Science, doi:10.1126/science.1242777.
  • Haberle, R. M., et al. (2013), Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission, accepted with revisions to. J Geophys. Res. Planets, 119, 255285, doi:10.1002/2013JE004517.
  • Herd, C. D. K., A. H. Treiman, G. A. McKay, and C. K. Shearer (2005), Light lithophile elements in Martian basalts: Evaluating the evidence for magmatic water degassing, Geochim. et Cosmochim. Acta, 69, 24312440.
  • Hewins, R. H., B. Zanda, M. Humayun, S. Pont, C. Fieni, and D. Deldicque (2013), Northwest Africa 7533, an impact breccia from Mars, 44th Lunar and Planetary Science Conference, no. 1719.
  • Hilbk-Kortenbruck, F., R. Noll, P. Wintjens, H. Falk, and C. Becker (2001), Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence, Spectrochim. Acta B, 56, 933945.
  • Horstman, E. L. (1957), The distribution of lithium, rubidium and caesium in igneous and sedimentary rocks, Geochim. et Cosmochim. Acta, 12, 128.
  • Huang, H., Z. Zhang, T. Kusky, M. Santosh, S. Zhang, D. Zhang, J. Liu, and Z. Zhao (2012), Continental vertical growth in the transitioinal zone between South Tianshan and Tarim, western Xinjiang, NW China: Insight from the Permian Halajun A1-type granitic magmatism, Lithos, 155, 4966.
  • Huntley, D. J., and R. G. V. Hancock (2001), The Rb contents of the K-feldspar grains being measured in optical dating, Ancient TL, 19, 4346.
  • Jafri, S. H., and J. M. Sheikh (2013), Geochemistry of pillow basalts from Bompoka, Andaman-Nicobar islands, Bay of Bengal, India, J. Asian Earth Sci., 64, 2737.
  • Johansson, S. A. E., and J. L. Campbell (1988), PIXE: A Novel Technique for Elemental Analysis, John Wiley, New York.
  • Kaygusuz, A. M., W. Arslan, F. S. Siebel, and N. Ilbeyli (2012), Geochronological evidence and tectonic significance of Carboniferous magmatism in the southwest Trabzon area, eastern Pontides, Turkey, Int. Geol. Rev., 54, 17761800.
  • Kinman, W. S., C. R. Neal, J. P. Davidson, and L. Font (2009), The dynamics of Kerguelen Plateau magma evolution: New insights from major element, trace element and Sr isotope microanalysis of plagioclase hosted in Elan Bank basalts, Chem. Geol., 264, 247265.
  • Komsta, L. (2012), Chemometric and statistical evaluation of calibration curves in pharmaceutical analysis—A short review on trends and recommendations, J. AOAC Int., 95, 669672.
  • Kramida, A., Y. Ralchenko, J. Reader, and NIST ASD Team (2012) NIST atomic spectra database (version 5.0), [Online]. Available at http://physics.nist.gov/asd [Friday, 09 August 2013 14:52:40 EDT]. National Institute of Standards and Technology, Gaithersburg, Md.
  • Krasniker, R., B. Valery, and I. Schechter (2001), Study of matrix effects in laser plasma spectroscopy by shock wave propagation, Spectrochim. Acta B, 56, 609618.
  • Lasue, J., R. C. Wiens, S. M. Clegg, D. T. Vaniman, K. H. Joy, S. Humphries, A. Mezzacappa, N. Melikechi, R. E. McInroy, and S. Bender (2012), Remote laser-induced breakdown spectroscopy (LIBS) for lunar exploration, J. Geophys. Res., 117, E01002, doi:10.1029/2011JE003898.
  • Laville, S., M. Sabsabi, and F. R. Doucet (2007), Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy coupled with a linear multivariate calibration, Spectrochim. Acta B, 62, 15571566.
  • Lazic, V., R. Barbini, F. Colao, R. Fantoni, and A. Palucci (2001), Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments, Spectrochim Acta B, 56, 807820.
  • Lentz, R. C. F., H. Y. McSween Jr., J. Ryan, and L. R. Riciputi (2001), Water in Martian magmas: Clues from light lithophile elements in shergottite and nakhlite pyroxenes, Geochim. et Cosmochim. Acta, 65, 45514565.
  • Leshin, L. A., et al. (2013), Volatile, isotope and organic analysis of Martian fines with the Mars Curiosity rover, Science, 341, doi:10.1126/science.1238937.
  • Magna, T., U. Wiechert, and A. N. Halliday (2006), New constraints on the lithium isotope compositions of the Moon and terrestrial planets, Earth Planet. Sci. Lett., 243, 336353.
  • Mahaffy, P. R., et al. (2013), Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity rover, Science, 341, doi:10.1126/science.1237966.
  • Mansoori, A., B. Roshanzadeh, M. Khalaji, and S. H. Tavassoli (2011), Quantitative analysis of cement powder by laser-induced breakdown spectroscopy, Optics Laser Eng., 49, 318323.
  • Martin, M. Z., S. Allman, D. J. Brice, R. C. Martin, and N. O. Andre (2012), Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ application, Spectrochim. Acta B, 74–75, 177183.
  • Maurice, S., et al. (2012), The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Science objectives and mast unit description, Space Sci. Rev., doi:10.1007/s11214-012-9912-2.
  • Maxwell, J. A., W. J. Teesdale, and J. L. Campbell (1995), The Guelph PIXE software package II, Nucl. Instr. Meth. B, 95, 407421.
  • McDonough, W. F., and S.-S. Sun (1995), The composition of the Earth, Chem. Geol., 120, 223253.
  • McDonough, W. F., S.-S. Sun, A. E. Ringwood, E. Jagoutz, and A. W. Hofmann (1992), Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth, Geochim. et Cosmochim. Acta, 56, 10011012.
  • McSween, H. Y., Jr. (2003), Mars, in The Treatise on Geochemistry, vol. 1, edited by H. D. Holland and K. K. Turekian, pp. 127, Elsevier Ltd, Oxford.
  • Meslin, P.-Y., et al. (2013), Soil diversity and hydration as observed by ChemCam at Gale crater, Mars, Science, 341, doi:10.1126/science.1238670.
  • Mevik, B.-H., and R. Wehrens (2007), The pls package: Principal component and partial least squares regression in R, J. Stat. Soft., 18, 124.
  • Mezzacappa, A., N. Melikechi, A. Cousin, N. Lanza, S. Clegg, G. Berger, S. Bender, J. Lasue, R. Wiens, and S. Maurice (2013) On the effects of distance between a laser and its target in LIBS measurements, FACSS Presents SciX, no. 25.
  • Ming, D. W., et al. (2006), Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars, J. Geophys. Res., 111, E02S12, doi:10.1029/2005JE002560.
  • Morris, R. V., et al. (2006a), Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills, J. Geophys. Res., 111, E02S13, doi:10.1029/2005JE002584.
  • Morris, R. V., et al. (2006b), Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits, J. Geophys. Res., 111, E12S15, doi:10.1029/2006JE002791.
  • Morris, R. V., et al. (2008), Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover, J. Geophys. Res., 113, E12S42, doi:10.1029/2008JE003201.
  • Morris, R. V., et al. (2013), The amorphous component in Martian basaltic soil in global perspective from MSL and MER missions, 44th Lunar and Planetary Science Conference, no. 1653.
  • Naes, T., T. Isaksson, T. Fearn, and T. Davies (2004), A User-Friendly Guide to Multivariate Calibration and Classification, NIR Publications, Chichester, U.K.
  • Nakamura, N. (1982), Origin and evolution of the Nakhla meteorite inferred from the Sm-Nd and U-Pb systematics and REE, Ba, Sr, Rb and K abundances, Geochim. et Cosmochim. Acta, 46, 15551573.
  • Nath, B. N., K. Kunzendorf, and W. L. Plüger (2000), Influence of provenance, weathering, and sedimentary processes on the elemental ratios of the fine-grained fraction of the bedload sediments from the Vembanad lake and the adjoining continental shelf, southwest coast of India, J. Sediment Res., 70, 10811094.
  • Nesbitt, H. W., and R. E. Wilson (1992), Recent chemical weathering of basalts, Am. J. Sci., 292, 740777.
  • Nesbitt, H. W., G. Markovics, and R. C. Price (1980), Chemical processes affecting alkalis and alkaline earths during continental weathering, Geochim. et Cosmochim. Acta, 44, 16591666.
  • Newsom, H. E., and J. J. Hagerty (1997), Chemical components of the Martian soil: Melt degassing, hydrothermal alteration, and chondritic debris, J. Geophys. Res., 102, 19,34519,355.
  • Newsom, H. E., J. Hagerty, and F. Goff (1999), Mixed hydrothermal fluids and the origin of the Martian soil, J. Geophys. Res., 104, 87178728.
  • Oldham, M. C., G. Konopka, K. Iwamoto, P. Langfelder, T. Kato, S. Horvath, and D. H. Geschwind (2008), Functional organization of the transcriptome in human brain, Nat. Neurosci., 11, 12711282.
  • Perez, A. d. C., D. V. Faustino-Eslava, G. P. Yumul Jr., C. B. Dimalanta, R. A. Tamayo Jr., T. F. Yang, and M.-F. Zhou (2013), Enriched and depleted characters of the Amnay Ophiolite upper crustal section and the regionally heterogeneous nature of the South China Sea mantle, J. Asian Earth Sci., 65, 107117.
  • Pichavant, M., D. J. Kontak, L. Briqueu, J. V. Herrera, and A. H. Clark (1988), The Miocene-Pliocene Macusani volcanics SE Peru, Mineral, Contrib. Mineral. Petrol., 100, 325338.
  • R Development Core Team n.d, R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria, ISBN 3-900051-07-0.
  • Rieder, R., H. Waenke, T. Economou, and A. Turkevich (1997), Determination of the chemical composition of Martian soil and rocks: the alpha proton X-ray spectrometer, J. Geophys. Res., 102, 40274044.
  • Rieder, R., R. Gellert, J. Brückner, G. Klingelhöfer, G. Dreibus, A. Yen, and S. W. Squyres (2003), The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers, J. Geophys. Res., 108(E12), 8066, doi:10.1029/2003JE002150.
  • Rudnick, R. L., and S. Gao (2003), Composition of the continental crust, in The Treatise on Geochemistry, vol. 3, edited by H. D. Holland and K. K. Turekian, Elsevier Ltd, Chichester, U.K.
  • Ruzicka, A., G. A. Snyder, and L. A. Taylor (2001), Comparative geochemistry of basalts from the moon, earth, HED asteroid, and Mars: Implications for the origin of the moon, Geochim. et Cosmochim. Acta, 65, 979997.
  • Saleemi, A. A., and Z. Ahmed (2000), Mineral and chemical composition of Karak mudstone, Kohat Plateau, Pakistan: Implications for smectite-illitization of provenance, Sediment. Geol., 130, 229247.
  • Sarifakioğlu, E., Y. Dilke, and J. A. Winchester (2013), Late Cretaceous subduction initiation and Palaeocene-Eocene slab breakoff magmatism in South-Central Anatolia, Turkey, Int. Geol. Rev., 55, 6687.
  • Sautter, V., et al. (2013), Igneous mineralogy at Bradbury rise: The first ChemCam campaign, J. Geophys. Res. Planets, 119, 3046, doi:10.1002/2013JE004472.
  • Schmidt, M. E., et al. (2013), Geochemical diversity in first rocks examined by the Curiosity rover in Gale crater: Evidence for and significance of an alkali and volatile-rich igneous source, J. Geophys. Res. Planets, doi:10.1002/2013JE004481.
  • Shaw, D. M. (1968), A review of K-Rb fractionation trends by covariance analysis, Geochim. et Cosmochim. Acta, 32, 573601.
  • Speicher, E. A., M. D. Dyar, M. L. Carmosino, S. M. Clegg, and R. C. Wiens (2011), Single variable and multivariate analysis of remote laser-induced breakdown spectra for prediction of Rb, Sr, Cr, Ba and V in igneous rocks, 42nd Lunar and Planetary Science Conference, no. 2385.
  • Stolper, E. M., et al. (2013), The petrochemistry of Jake_M: A Martian mugearite, Science, 341, doi:10.1126/science.1239463.
  • Su, B.-X., H.-F. Zhang, E. Deloule, P. A. Sakyi, Y. Xiao, Y.-J. Tang, Y. Hu, J.-F. Ying, and P.-P. Liu (2012), Extremely high Li and low δ7Li signatures in the lithospheric mantle, Chem. Geol., 292–293, 149157.
  • Taylor, S. R. and S. McLennan (2009) Planetary Crusts: Their Composition, Origin and Evolution, Cambridge Univ. Press, Cambridge, U.K., doi:10.1017/CB09780511575358.
  • Taylor, S. R., C. H. Emeleus, and C. S. Exley (1956), Some anomalous K/Rb ratios in igneous rocks and their petrological signficiance, Geochim. et Cosmochim. Acta, 10, 224229.
  • Tokar, R. L., et al. (2013), Searching for chemical variation across the surface of “Rocknest_3” using MSL ChemCam spectra, 42nd Lunar and Planetary Science Conference, no. 1283.
  • Tomascak, P. B., C. H. Langmuir, P. J. le Roux, and S. B. Shirey (2008), Lithium isotopes in global mid-ocean ridge basalts, Geochim. et Cosmochim. Acta, 72, 16261637.
  • Toulmin, P., III, A. K. Baird, B. C. Clark, K. Keil, H. J. Rose Jr., R. P. Christian, P. H. Evans, and W. C. Kelliher (1977), Geochemical and mineralogical interpretation of the Viking inorganic chemical results, J. Geophys. Res., 82, 46254634.
  • Tucker, J. M., M. D. Dyar, M. W. Schaefer, S. M. Clegg, and R. C. Wiens (2010), Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis, Chem. Geol., 277, 137148.
  • Van Grieken, R. E., and A. A. Markowicz (1993), Handbook of X-ray Spectroscopy: Methods and Techniques, Marcel Dekker, Inc., New York.
  • Vaniman, D., M. D. Dyar, R. C. Wiens, A. Ollila, N. Lanza, J. Lasue, M. Rhodes, and S. M. Clegg (2012), Ceramic ChemCam calibration targets on Mars Science Laboratory, Space Sci. Rev., 170, 229255, doi:10.1007/s11214-012-9886-0.
  • Velbel, M. A., D. T. Long, and J. L. Gooding (1991), Terrestrial weathering of Antarctic stone meteorites: Formation of Mg-carbonates on ordinary chondrites, Geochim. et Consmochim. Acta, 55, 6776.
  • Vigier, N., A. Decarreau, R. Millot, J. Carignan, S. Petit, and C. France-Lanord (2008), Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle, Geochim. et Cosmochim. Acta, 72, 780792.
  • Wiens, R. C., et al. (2012), The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Body unit and combined systems tests, Space Sci. Rev., doi:10.1007/s11214-012-9902-4.
  • Wiens, R. C., et al. (2013), Pre-flight calibration and initial data processing for the ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument on the Mars Science Laboratory (MSL), Spectrochim. Acta B, 82, 127, doi:10.1016/j.sab.2013.02.003.
  • Williams, R. M. E., et al. (2013), Martian fluvial conglomerates at Gale crater, Science, 340, 10681072.
  • Wilson, J. R., and J. S. Coats (1972), Alkali feldspars from part of the Galway granite Ireland, Mineral. Mag., 38, 801810.
  • Wronkiewicz, D. J., and K. C. Condie (1987), Geochemistry of Archean shales from the Witwatersrand Supergroup South Africa: Source-area weathering and provenance, Geochim. et Cosmochim. Acta, 51, 24012416.
  • Wronkiewicz, D. J., and K. C. Condie (1990), Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroups, South Africa: Cratonic evolution during the early Proterozoic, Geochim. et Cosmochim. Acta, 54, 343354.
  • Xu, Y.-G., H.-H. Zhang, H.-N. Qiu, W.-C. Ge, and F.-Y. Wu (2012), Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone?, Chem. Geol., 328, 168184.
  • Yen, A. S., et al. (2005), An integrated view of the chemistry and mineralogy of Martian soils, Nature, 436, 4954, doi:10.1038/nature03637.
  • Yen, A. S., et al. (2013), Evidence for a global Martian soil composition extends to Gale crater, 44th Lunar and Planetary Science Conference, Abs. No. 2495.
  • Zhang, Y., L. S. Shu, and X. Y. Chen (2011), Geochemistry, geochronology, and petro-genesis of the early Paleozoic granitic plutons in the central-southern Jiangxi Province, China, Sci. China Earth, 54, 14921510.