SEARCH

SEARCH BY CITATION

References

  • Carlson, R. H., and D. G. Jones (1965), Distribution of ejecta from cratering explosions in soils, J. Geophys. Res., 70, 18971910.
  • Cooper, H. F. (1977), A summary of explosion cratering phenomena relevant to meteor impact events, in Impact and Explosion Cratering: Planetary and Terrestrial Implications, edited by D. J. Roddy et al., pp. 1144, Pergamon Press, New York.
  • Croft, S. K. (1980), Cratering flow fields: Implications for the excavation and stranient expansion stages of crater formation, Proc. Lunar Planet. Sci. Conf. 11th, 2347–2378.
  • Croft, S. K. (1981), The excavation stage of basin formation: A qualitative model in Multi-ring Basins, Proc. Lunar Planet. Sci., edited by P. H. Schultz and R. B. Merrill, pp. 207225, Pergamon Press, New York.
  • Dillon, L. A. (1972) The influence of soil and rock properties on the dimensions of explosion-produced craters, Tech. Rept. AFWL-TR-71-144 (Air Force Weapons Lab., Kirtland Air Force Base, New Mexico.
  • Enns, A. C., and M. S. Robinson (2013), Basaltic layers exposed in lunar mare craters. Lunar Planet. Sci. Conf. 44, abstract #2751.
  • Fassett, C. I., J. W. Head, D. E. Smith, M. T. Zuber, and G. A. Neumann (2011), Thickness of proximal ejecta from the Orientale Basin from Lunar Orbiter Laser Altimeter (LOLA) data: Implications for multi-ring basin formation, Geophys. Res. Lett., 38 L17201, doi:10.1029/2011GL048502.
  • Grieve, R. A. F., and A. M. Therriault (2004), Observations at terrestrial impact structures: Their utility in constraining crater formation, Meteorit. Planet. Sci., 39, 199216.
  • Grieve, R. A. F., P. B. Robertson, and M. R. Dence (1981), Constraints on the formation of ring impact structures based on terrestrial data, in Multi-ring Basins, Proc. Lunar Planet. Sci, edited by P. H. Schultz and R. B. Merrill, pp. 3757, Pergamon Press, New York.
  • Jones, G. H. S. (1978), Coherently overturned flaps surround craters, Nature, 273, 211213.
  • Kring, D. A. (2007), Guidebook to the geology of Barringer Meteorite Crater, Arizona (a.k.a. Meteor Crater), LPI Contrib., 1355, 1–150.
  • Kumar, P. S., and D. A. Kring (2008), Impact fracturing and structural modification of sedimentary rocks at Meteor Crater, Arizona, J. Geophys. Res., 113, E09009, doi:10.1029/2008JE003115.
  • Lucey, P. G. (2004), Mineral maps of the Moon, Geophys. Res. Lett. 31, L08701, doi: 10.1029/2003GL019406.
  • Lucey, P. G., G. J. Taylor, and B. R. Hawke (1998), FeO and TiO2 concentrations in the South Pole-Aitken basin: Implications for mantle composition and basin formation, J. Geophys. Res., 103, 37013708.
  • Maloof, A. C., S. T. Stewart, B. P. Weiss, S. A. Soule, N. L. Swanson-Hysell, K. L. Louzada, I. Garick-Bethell, and P. M. Poussart (2010), Geology of Lonar Crater India, Geol. Soc. Am. Bull., 122, 109126.
  • McGetchin, T. R., M. Settle, and J. W. Head (1973), Radial thickness variation in impact crater ejecta: Implications for lunar basin deposits, Earth Planet. Sci. Lett., 20, 226236.
  • Melosh, H. J. (1989), Impact Cratering: A Geologic Process, Oxford Univ. Press, Oxford.
  • Melosh, H. J., and B. A. Ivanov (1999), Impact crater collapse, Annu. Rev. Earth Planet. Sci., 27, 385415.
  • Morrison, D. A. (1998), Did a thick South Pole-Aiken basin melt sheet differentiate to form cumulates?, Lunar Planet. Sci., XXIX, 1657.
  • Morrison, R. H. and V. R. Oberbeck (1978) A composition and thickness model for lunar impact crater and basin deposits, Proc. Lunar Planet. Sci. Conf. 9th, 3763–3785.
  • Oberbeck, V. R. (1975), The role of ballistic erosion and sedimentation in Lunar stratigraphy, Rev. Geophys. Space Phys., 13, 337362.
  • Pike, R. J. (1972), Geometric similitude of lunar and terrestrial craters, 24th Internat. Geol. Cong. Sect. 15, 41–47.
  • Pike, R. J. (1974), Ejecta from large craters on the Moon: Comments on the geometric model of McGetchin et al. 1974, Earth Planet. Sci. Lett., 23, 265274.
  • Pike, R. J. (1976), Crater dimensions from Apollo data and supplemental sources, The Moon, 15, 463477.
  • Pike, R. J. (1977), Size-dependence in the shape of fresh impact craters on the Moon, in Impact and Explosion Cratering: Planetary and Terrestrial Implications, edited by D. J. Roddy, et al., pp. 489509, Pergamon Press, New York.
  • Poelchau, M. H., T. Kenkmann, and D. A. Kring (2009) Rim uplift and crater shape in Meteor Crater: Effects of target heterogeneities and trajectory obliquity, J. Geophys. Res., 114, E01006, doi:10.1029/2008JE003235.
  • Robinson, M. R. et al. (2010), Lunar Reconnaissance Orbiter Camera(LROC) instrument overview, Space Sci. Rev., 150, 81124.
  • Roddy, D. J. (1978) Pre-impact geologic conditions, physical properties, energy calculations, meteorite and initial crater dimensions and orientations of joints, faults and walls at Meteor Crater, Arizona, Proc. Lunar Planet. Sci. Conf. 9th, 3891–3930.
  • Roddy, D. J., Boyce, J. M., Colton G. W. and A. L. Dial (1975), Meteor Crater, Arizona rim drilling with thickness, structural uplift, diameter, depth, volume, and mass-balance calculations. Proc. Lunar Sci. Conf. 6th, 2621–2644.
  • Scholten, F. J., J. Oberst, K.-D. Matz, T. Roatsch, M. Wählisch, E. J. Speyerer, and M. S. Robinson (2012), GLD100: The near-global lunar 100 m raster DTM from LROC WAC stereo image data, J. Geophys. Res., 117 E00H17, doi:10.1029/2011JE003926.
  • Sharpton, V. L., and J. W. Head (1982), Stratigraphy and structural evolution of southern Mare Serenitatis: A reinterpretation based on Apollo Lunar Sounder Experiment data, J. Geophys. Res., 87, 10,98310,998.
  • Shoemaker, E. M. (1960), Penetration mechanics of high velocity meteorites, illustrated by Meteor Crater, Arizona. 21st Internat. Geol Congr. Sect. 15, 418–434.
  • Shoemaker, E. M. (1963), Impact mechanics at Meteor crater, Arizona, in The Moon, Meteorites and Comets: Chicago, edited by G. Kuiper and B. Middlehurst, pp. 301336, University of Chicago Press, Illinois.
  • Shoemaker, E. M., and S. W. Kieffer (1974), Guidebook to the Geology of Meteor Crater, Arizona, 66 pp., Cent. for Meteorite Stud., Ariz. State Univ., Tempe.
  • Smith, D. E., et al. (2010), The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission, Space Sci. Rev., 150, 209242.
  • Spudis, P. D. (1993), The Geology of Multi-ring Basins: The Moon and Other Planets, Cambridge Univ. Press, Cambridge, U.K.
  • Spudis, P. D., R. A. Reisse, and J. J. Gillis (1994), Ancient multiring basins on the Moon revealed by Clementine laser altimetry, Science, 266, 18481851.
  • Stöffler, D., D. E. Gault, J. Wedekind, and G. Polkowski (1975), Experimental hypervelocity impact into quartz sand: Distribution and shock metamorphism of ejecta, J.. Geophys. Res., 80, 40624077.
  • Taylor, S. R., C. M. Pieters, and G. J. MacPherson (2006), Earth-Moon System Planetary Science and Lessons Learned, Rev. Miner. Geochim., 6, 657704.
  • Tran, T., et al. (2010), Generating digital terrain models using LROC NAC images. Proc. ISPRS, 38, (http://www.isprs.org/proceedings/XXXVIII/part4/files/Tran.pdf).
  • Wieczorek, M. A., et al. (2006), The constitution and structure of the lunar interior, Rev. Miner Geochem., 6, 221364.
  • Wieczorek, M. A., et al. (2013), The crust of the Moon as seen by GRAIL, Science, 339, 671675.
  • Yamamoto, S., R. Nakamura, T. Matsunaga, Y. Ogawa, Y. Ishihara, T. Morota, N. Hirata, M. Ohtake, T. Hiroi, and Y. Yokota (2010), Possible mantle origin of olivine around lunar impact basins detected by SELENE, Nat. Geosci., 3, 533536, doi:10.1038/NGEO897.
  • Zuber, M. T., et al. (2012), Gravity field of the Moon from the Gravity Recovery and Interior Laboratory Mission, Science, 339, 668671.