Get access
Journal of Geophysical Research: Earth Surface

Analysis and modeling of gully headcut dynamics, North American high plains

Authors


Abstract

Gullies are dynamic fluvial features that can be the primary driver for landscape dissection and sediment production in many settings. This research exploits a well-constrained field area near West Bijou Creek, Colorado, U.S., in order to develop a natural experiment in which we explore gully headcut erosion rates, the controls on gully headcut height, and the morphology of gully longitudinal profiles. Analysis of headcut retreat using aerial photography and airborne lidar imagery indicates that headcut retreat rates correlate with the square root of drainage area approximately. We investigate how a drainage area control on headcut retreat translates into the longitudinal profile morphology over time using a simple numerical model. The model combines fluvial erosion, deposition, and headcut retreat to identify the necessary and sufficient conditions needed to reproduce longitudinal profiles observed in the field. Field profiles are typically concave-upward, predominantly aggradational channel profiles with retreating headcuts whose height varies with catchment position. Systematic variation of environmental parameters in the model showed that the most successful model was achieved when highly resistant vegetation is applied throughout the channel, excluding a bare soil zone downstream of the headcut. This model scenario maintained an abrupt headcut over hundreds of model years and produced a realistic longitudinal profile that aggrades downstream of the headcut over time. The vegetation pattern used in the best model fit is observed at the field site, where easily erodible, sparsely vegetated soil downstream of the headcut grades into a more resistant grassy channel downstream.

Get access to the full text of this article

Ancillary