SEARCH

SEARCH BY CITATION

References

  • Ambers, R. K. (2001), Using the sediment record in a western Oregon flood-control reservoir to assess the influence of storm history and logging on sediment yield, J. Hydrol., 244(3), 181200.
  • American Rivers (2013), 62 Dams removed to restore rivers in 2012. [Available at http://www.americanrivers.org/newsroom/press-releases/2013/62-dams-removed-in-2012.html, Accessed 3 July 2013.]
  • Bountry, J. A., Y. G. Lai, and T. J. Randle (2013), Sediment impacts from Savage Rapids Dam removal, Rogue River, Oregon, in The Challenges of Dam Removal and River Restoration, Geol. Soc. Am., edited by J. V. DeGraff and J. E. Evans, pp. 93104, Boulder, Colo.
  • Cannatelli, K. M., and J. C. Curran (2012), Importance of hydrology on channel evolution following dam removal: Case study and conceptual model, J. Hydraul. Eng.-ASCE, 138(5), 377390, doi:10.1061/(asce)hy.1943-7900.0000526.
  • Carrivick, J. L. (2011), Jökulhlaups: Geological importance, deglacial association and hazard management, Geol. Today, 27(4), 133140.
  • Collins, M. L., et al. (2013), Physical and biological responses to dam removal sediment release, Patapso River, Maryland, EOS Trans. AGU, Fall Meet. Suppl., Abstract EP43A-0821.
  • Cronin, S. J., V. Neall, J. Lecointre, and A. Palmer (1999), Dynamic interactions between lahars and stream flow: A case study from Ruapehu volcano, New Zealand, Geol. Soc. Am. Bull., 111(1), 2838.
  • Cui, Y. (2007), Examining the dynamics of grain size distributions of gravel/sand deposits in the Sandy River, Oregon with a numerical model, River Res. Appl., 23(7), 732751, doi:10.1002/rra.1012.
  • Cui, Y., and A. Wilcox (2008), Development and application of numerical models of sediment transport associated with dam removal, in Sedimentation Engineering: Theory, Measurements, Modeling, and Practice, ASCE Manual 110, edited by M. H. Garcia, chap. 23, pp. 9951020, ASCE, Reston, Va.
  • Czuba, C. R., T. J. Randle, J. A. Bountry, C. S. Magirl, J. A. Czuba, C. A. Curran, and C. P. Konrad (2011a), Anticipated sediment delivery to the lower Elwha River during and following dam removal, in Coastal Habitats of the Elwha River, Washington—Biological and Physical Patterns and Processes Prior to Dam Removal, U.S. Geol. Surv., edited by J. J. Duda, J. A. Warrick, and C. S. Magirl, pp. 2746, Reston, Va.
  • Czuba, J. A., C. S. Magirl, C. R. Czuba, E. E. Grossman, C. A. Curran, A. S. Gendaszek, and R. S. Dinacola (2011b), Sediment load from major rivers into Puget Sound and its adjacent waters, 4 pp., U.S. Geol. Surv., Fact Sheet 2011-3083.
  • DeGraff, J. V., and J. E. Evans (Eds.) (2013), The Challenges of Dam Removal and River Restoration, GSA Reviews in Engineering Geology, vol. 21, Geol. Soc. Am., Boulder, Colo.
  • Downs, P. W., Y. Cui, J. K. Wooster, S. R. Dusterhoff, D. B. Booth, W. E. Dietrich, and L. S. Sklar (2009), Managing reservoir sediment release in dam removal projects: An approach informed by physical and numerical modelling of non-cohesive sediment, Int. J. River Basin Manage., 7(4), 433452, doi:10.1080/15715124.2009.9635401.
  • Doyle, M. W., E. H. Stanley, and J. M. Harbor (2003a), Channel adjustments following two dam removals in Wisconsin, Water Resour. Res., 39(1), 1011, doi:10.1029/2002WR001714.
  • Doyle, M. W., E. H. Stanley, J. M. Harbor, and G. G. Grant (2003b), Dam removal in the United States: Emerging needs for science and policy, Eos Trans. AGU, 84(4), 2936, doi:10.1029/2003EO040001.
  • Draut, A. E., and A. C. Ritchie (2013), Sedimentology of new fluvial deposits on the Elwha River, Washington, USA, formed during large-scale dam removal, River Res. Appl., doi:10.1002/rra.
  • Duda, J. J., J. A. Warrick, and C. S. Magirl (Eds.) (2011), Coastal habitats of the Elwha River, Washington—Biological and physical patterns and processes prior to dam removal, 264 pp., U.S. Geol. Surv. Sci. Invest. Rep., 2011-5120.
  • Evans, E., and A. C. Wilcox (2013), Fine sediment infiltration dynamics in a gravel-bed river following a sediment pulse, River Res. Appl., doi:10.1002/rra.2647.
  • Federal Energy Regulatory Commission (2002), Final supplemental final environmental impact statement, Condit Hydroelectric Project Washington FERC No. 2342, Washington, D. C.
  • Finley Engineering (2006), Condit Dam and Northwestern Lake hydrographic surveys final report, Prepared for PacifiCorp, Portland, Oreg.
  • Folk, R. L. (1980), Petrology of Sedimentary Rocks, 182 pp., Hemphill Publishing Company, Austin, Tex.
  • G&G Associates (2004), Condit hydroelectric project removal, sediment behavior analysis report, Prepared for PacifiCorp, Portland, Oreg.
  • Graf, W. L. (Ed.) (2002), Dam Removal Research: Status and Prospects, 151 pp., H. John Heinz III Center for Science, Economics and the Environment, Washington, D. C.
  • Gray, J. R., and F. J. M. Simoes (2008), Estimating sediment discharge, in Sedimentation Engineering, edited by M. H. Garcia, pp. 10671088, American Society of Civil Engineering Manuals and Reports on Engineering Practice, Reston, Va.
  • Guthrie, R., P. Friele, K. Allstadt, N. Roberts, S. Evans, K. Delaney, D. Roche, J. Clague, and M. Jakob (2012), The 6 August 2010 Mount Meager rock slide-debris flow, Coast Mountains, British Columbia: Characteristics, dynamics, and implications for hazard and risk assessment, Nat. Hazards Earth Syst. Sci., 12(5), 12771294.
  • Iverson, R. M. (2014), Debris flows: Behaviour and hazard assessment, Geol. Today, 30, 1520.
  • Kibler, K., D. Tullos, and M. Kondolf (2011), Evolving expectations of dam removal outcomes: Downstream geomorphic effects following removal of a small, gravel-filled dam, JAWRA J. Am. Water Resour. Assoc., 47(2), 408423, doi:10.1111/j.1752-1688.2011.00523.x.
  • Kleinfelder (2007), Sediment sampling and analysis report, Northwestern Lake, Condit Hydroelectric Project, Prepared for PacifiCorp Energy, Beaverton, Oreg.
  • Magirl, C. S., P. J. Connolly, B. Coffin, J. J. Duda, C. A. Curran, and A. E. Draut (2010), Sediment management strategies associated with dam removal in the State of Washington, paper presented at Proceedings of the 2nd Joint Federal Interagency Conference, Las Vegas, Nev., 28 June–July 1.
  • Major, J. J., K. R. Spicer, and R. A. Collins (2010), Time-lapse imagery of the breaching of Marmot Dam, Oregon, and subsequent erosion of sediment by the Sandy River—October 2007 to May 2008, 5 pp., U.S. Geol. Surv. Data Ser., 521.
  • Major, J. J., et al. (2012), Geomorphic response of the Sandy River, Oregon, to removal of Marmot Dam, USGS Prof. Pap., 1792, 64.
  • Mead & Hunt, Kleinfelder, and JR Merit (2011), Project removal design report, Condit Hydroelectric Project Decommissioning FERC Project No. 2342, Prepared for PacifiCorp Energy.
  • Morgenstern, N. R. (1963), Stability charts for earth slopes during rapid drawdown, Geotechnique, 13, 121131.
  • O'Connor, J. E., J. H. I. Hardison, and J. E. Costa (2001), Debris flows from failures of Neoglacial-age moraine dams in the Three Sisters and Mt. Jefferson Wilderness areas, Oregon, U.S. Geol. Surv. Prof. Pap., 1606, 93.
  • Pearson, A. J., N. P. Snyder, and M. J. Collins (2011), Rates and processes of channel response to dam removal with a sand-filled impoundment, Water Resour. Res., 47, W08504, doi:10.1029/2010WR009733.
  • Pierson, T. C. (2005), Hyperconcentrated flow—Transitional process between water flow and debris flow, in Debris-Flow Hazards and Related Phenomena, edited by M. Jakob and O. Hungr, pp. 159202, Springer-Praxis, Berlin Heidelberg.
  • Pierson, T. C., and K. M. Scott (1985), Downstream dilution of a lahar: Transition from debris flow to hyperconcentrated streamflow, Water Resour. Res., 21, 15111524, doi:10.1029/WR021i010p01511.
  • Pizzuto, J. (2002), Effects of dam removal on river form and process, BioScience, 52(8), 683691.
  • Procter, J., S. J. Cronin, I. C. Fuller, G. Lube, and V. Manville (2010), Quantifying the geomorphic impacts of a lake-breakout lahar, Mount Ruapehu, New Zealand, Geology, 38(1), 6770.
  • Randle, T. J., and B. Greimann (2004), Sediment impact analysis for the proposed Hemlock Dam removal project: Gifford Pinchot National Forest, Skamania County, 63 pp., U.S. Bureau of Reclamation Technical Service Report, Denver, Colo.
  • Riverbend Engineering, and JR Merit (2012), Annual sediment assessment report-2012, Condit Hydroelectric Project Decommissioning FERC Project No. 2342, Prepared for PacifiCorp Energy.
  • Roering, J. J., J. Marshall, A. M. Booth, M. Mort, and Q. Jin (2010), Evidence for biotic controls on topography and soil production, Earth Planet. Sci. Lett., 298(1), 183190.
  • Sawaske, S. R., and D. L. Freyberg (2012), A comparison of past small dam removals in highly sediment-impacted systems in the U.S, Geomorphology, 151–152(0), 50-58.
  • Service, R. F. (2011), Will busting dams boost salmon?, Science, 334(6058), 888892.
  • Simons, D. B., E. V. Richardson, and C. F. J. Nordin (1965), Sedimentary structures generated by flow in alluvial channels, in Primary Sedimentary Structures and Their Hydrodynamic Interpretation, Society of Economic Paleontologists and Mineralogists Special Publication, vol. 12, edited by G. V. Middleton, pp. 3452, SEPM, Fort Collins, Colo.
  • Tullos, D., and H.-W. Wang (2014), Morphological responses and sediment processes following a typhoon-induced dam failure Dahan River, Taiwan, Earth Surf. Processes Landforms, 39, 245258, doi:10.1002/esp.3446.
  • USEPA (2004), Milltown Reservoir sediments operable unit of the Milltown Reservoir/Clark Fork River superfund site record of decision, U.S. Environmental Protection Agency Region 8, Helena, Mont.
  • Walter, C., and D. D. Tullos (2010), Downstream channel changes after a small dam removal: Using aerial photos and measurement error for context; Calapooia River, Oregon, River Res. Appl., 26(10), 12201245, doi:10.1002/rra.1323.
  • Warrick, J. A., J. J. Duda, C. S. Magirl, and C. A. Curran (2012), River turbidity and sediment loads during dam removal, Eos Trans. AGU, 93(43), 425426, doi:10.1029/2012EO430002.
  • Washington State Department of Ecology (2007), Condit Dam Removal Final SEPA Supplemental Environmental Impact Statement (FSEIS), Yakima, Wash.
  • Watershed Sciences Inc. (2012), Condit Dam, Washington LiDAR data, Corvallis, Oreg.
  • Wilcock, P. R., and J. C. Crowe (2003), Surface-based transport model for mixed-size sediment, J. Hydraul. Eng.-ASCE, 129(2), 120128, doi:10.1061/(asce)0733-9429(2003)129:2(120).
  • Wilcock, P. R., S. T. Kenworthy, and J. C. Crowe (2001), Experimental study of the transport of mixed sand and gravel, Water Resour. Res., 37, 33493358, doi:10.1029/2001WR000683.
  • Wilcox, A. C. (2010), Sediment transport and deposition resulting from a dam-removal sediment pulse: Milltown Dam, Clark Fork River, MT, EOS Trans. AGU, Fall Meet. Suppl., Abstract H31E-1045.
  • Wildman, L. A. S., and J. G. MacBroom (2005), The evolution of gravel bed channels after dam removal: Case study of the Anaconda and Union City Dam removals, Geomorphology, 71(1-2), 245262, doi:10.1016/j.geomorph.2004.08.018.