SEARCH

SEARCH BY CITATION

References

  • Alberic, P., and M. Lepiller (1998), Oxidation of organic matter in a karstic hydrologic unit supplied through stream sinks (Loiret, France), Water Res., 32(7), 20512064.
  • Aravena, R., L. I. Wassenaar, and E. C. Spiker (2004), Chemical and carbon isotopic composition of dissolved organic carbon in a regional confined methanogenic aquifer, Isot. Environ. Health Stud., 40(2), 103114.
  • Arthur, J. D., A. A. Dabous, and J. B. Cowart (2002), Mobilization of arsenic and other trace elements during aquifer storage and recovery, southwest Florida, paper presented at U.S. Geological Survey Artificial Recharge Workshop Proceedings, U.S. Geological Survey, Sacramento, Calif.
  • Batiot, C., C. Emblanch, and B. Blavoux (2003), Total Organic Carbon (TOC) and magnesium (Mg2+): Two complementary tracers of residence time in karstic systems, C. R. Geosci., 335(2), 205214.
  • Birdwell, J. E., and A. S. Engel (2009), Variability in terrestrial and microbial contributions to dissolved organic matter fluorescence in the Edwards Aquifer, central Texas, J. Cave Karst Stud., 71(2), 144156.
  • Budd, D. A., and H. L. Vacher (2004), Matrix permeability of the confined Floridan Aquifer, Florida, USA, Hydrogeol. J., 12(5), 531549.
  • Chapelle, F. H., P. M. Bradley, D. R. Lovley, K. O'Neill, and J. E. Landmeyer (2002), Rapid evolution of redox processes in a petroleum hydrocarbon-contaminated aquifer, Ground Water, 40(4), 353360.
  • Clark, I. D., and P. Fritz (1997), Environmental Isotopes in Hydrogeology, CRC Press, Boca Raton, Fla.
  • Davis, J. A. (1982), Adsorption of natural dissolved organic-matter at the oxide water interface, Geochim. Cosmochim. Acta, 46(11), 23812393.
  • de Montety, V., J. B. Martin, M. J. Cohen, C. Foster, and M. J. Kurz (2011), Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river, Chem. Geol., 283(1-2), 3143.
  • Drever, J. I. (2002), The Geochemistry of Natural Waters: Surface and Groundwater Environments, pp. 114116, Prentice Hall, Upper Saddle River, N. J.
  • Dreybrodt, W. (1990), The role of dissolution kinetics in the development of karst aquifers in limestone - a model simulation of karst evolution, J. Geol., 98(5), 639655.
  • Engel, A. S., M. L. Porter, L. A. Stern, S. Quinlan, and P. C. Bennett (2004), Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic "Epsilonproteobacteria", FEMS Microbiol. Ecol., 51(1), 3153.
  • Farnleitner, A. H., I. Wilhartitz, G. Ryzinska, A. K. Kirschner, H. Stadler, M. M. Burtscher, R. Hornek, U. Szewzyk, G. Herndl, and R. L. Mach (2005), Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities, Environ. Microbiol., 7(8), 12481259.
  • Findlay, S. E. G., and R. L. Sinsabaugh (2003), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter, 1st ed., Academic Press, Amsterdam, The Netherlands.
  • Florea, L. J., and H. L. Vacher (2006), Springflow hydrographs: Eogenetic vs. telogenetic karst, Ground Water, 44(3), 352361.
  • Ford, D. C., and P. W. Williams (2007), Karst Hydrogeology and Geomorphology, pp. 562, Wiley, Chichester, U. K.
  • Frimmel, F. H. (1998), Characterization of natural organic matter as major constituents in aquatic systems, J. Contam. Hydrol., 35(1-3), 201216.
  • Frye, G. C., and M. M. Thomas (1993), Adsorption of organic-compounds on carbonate minerals. 2. Extraction of carboxylic-acids from recent and ancient carbonates, Chem. Geol., 109(1-4), 215226.
  • Grubbs, J. W. (1998), Recharge rates to the Upper Floridan Aquifer in the Suwannee River Water Management District, Florida, U. S. Geol. Surv. Water Resour. Invest. Rep., 97-4283, 30.
  • Gulley, J., J. B. Martin, E. J. Screaton, and P. J. Moore (2011), River reversals into karst springs: A model for cave enlargement in eogenetic karst aquifers, Geol. Soc. Am. Bull., 123(3-4), 457467.
  • Hancock, P. J., A. J. Boulton, and W. F. Humphreys (2005), Aquifers and hyporheic zones: Towards an ecological understanding of groundwater, Hydrogeol. J., 13(1), 98111.
  • Haque, S. E., J. Tang, W. J. Bounds, D. J. Burdige, and K. H. Johannesson (2007), Arsenic geochemistry of the great dismal swamp, Virginia, USA: Possible organic matter controls, Aquat. Geochem., 13(4), 289308.
  • Heffernan, J. B., M. J. Cohen, T. K. Frazer, R. G. Thomas, T. J. Rayfield, J. Gulley, J. B. Martin, J. J. Delfino, and W. D. Graham (2010), Hydrologic and biotic influences on nitrate removal in a subtropical spring-fed river, Limnol. Oceanogr., 55(1), 249263.
  • Hoch, A. R., M. M. Reddy, and G. R. Aiken (2000), Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades, Geochim. Cosmochim. Acta, 64(1), 6172.
  • Hoffer-French, K. J., and J. S. Herman (1989), Evaluation of hydrological and biological influences on CO2 fluxes from a karst stream, J. Hydrol., 108(1-4), 189212.
  • Inskeep, W. P., and P. R. Bloom (1986), Kinetics of calcite precipitation in the presence of water-soluble organic-ligands, Soil Sci. Soc. Am. J., 50(5), 11671172.
  • Jiang, J., and A. Kappler (2008), Kinetics of microbial and chemical reduction of humic substances: Implications for electron shuttling, Environ. Sci. Technol., 42(10), 35633569.
  • Jin, J., (2012), Natural dissolved organic matter dynamics in a karstic surface-groundwater exchange system, PhD dissertation, 168 pp., University of Florida, Gainesville, Fla.
  • Jin, J., and A. R. Zimmerman (2010), Abiotic interactions of natural dissolved organic matter and carbonate aquifer rock, Appl. Geochem., 25(3), 472484.
  • Konhauser, K. (2007), Introduction to Geomicrobiology, Blackwell Publishing, Oxford, U. K.
  • Kurz, R. C., et al. (2004), Mapping and Monitoring Submerged Aquatic Vegetation in Ichetucknee Springs, pp. 135, Suwanee River Water Management District, Live Oak, Fla.
  • Langston, A. L., E. J. Screaton, J. B. Martin, and V. Bailly-Comte (2012), Interactions of diffuse and focused allogenic recharge in an eogenetic karst aquifer (Florida, USA), Hydrogeol. J., 20(4), 767781.
  • Lau, L. S., and J. F. Mink (1987), Organic contamination of groundwater - A learning-experience, J. Am. Water Works Assn., 79(8), 3742.
  • Lee, E. S., and N. C. Krothe (2001), A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers, Chem. Geol., 179(1-4), 129143.
  • Lee, J. U., S. W. Lee, K. W. Kim, and C. H. Yoon (2005), The effects of different carbon sources on microbial mediation of arsenic in arsenic-contaminated sediment, Environ. Geochem. Health, 27(2), 159168.
  • Li, S.-L., C.-Q. Liu, J. Li, Y.-C. Lang, H. Ding, and L. Li (2010), Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China: Isotopic and chemical constraints, Chem. Geol., 277(3-4), 301309.
  • Lin, Y. P., and P. C. Singer (2005), Inhibition of calcite crystal growth by polyphosphates, Water Res., 39(19), 48354843.
  • Lindroos, A. J., V. Kitunen, J. Derome, and H. S. Helmisaari (2002), Changes in dissolved organic carbon during artificial recharge of groundwater in a forested esker in Southern Finland, Water Res., 36(20), 49514958.
  • Lovley, D. R., and F. H. Chapelle (1995), Deep subsurface microbial processes, Rev. Geophys., 33(3), 365381.
  • Martin, J. B., and R. W. Dean (2001), Exchange of water between conduits and matrix in the Floridan aquifer, Chem. Geol., 179, 145165.
  • Martin, J. B., and P. J. Moore (2007), Hydrogeology of O'Leno State Park and Nitrate Loading from the River Rise, A First Magnitude Spring. Comprehensive Project Report. DEP Agreement S0182.
  • McCarthy, J. F., B. Gu, L. Liang, J. Mas-Pla, T. M. Williams, and T.-C. J. Yeh (1996), Field tracer tests on the mobility of natural organic matter in a sandy aquifer, Water Resour. Res., 32(5), 12231238.
  • Miller, J. A. (1986), Hydrogeologic Framework of the Floridan Aquifer System in Florida and in Parts of Georgia, Alabama, and South Carolina, US Geological Survey Professional Paper 1403-B.
  • Moore, P. J., J. B. Martin, and E. J. Screaton (2009), Geochemical and statistical evidence of recharge, mixing, and controls on spring discharge in an eogenetic karst aquifer, J. Hydrol., 376(3-4), 443455.
  • Moore, P. J., J. B. Martin, E. J. Screaton, and P. S. Neuhoff (2010), Conduit enlargement in an eogenetic karst aquifer, J. Hydrol., 393, 143155.
  • Opsahl, S. P., and J. P. Chanton (2006), Isotopic evidence for methane-based chemosynthesis in the Upper Floridan aquifer food web, Oecologia, 150(1), 8996.
  • Pabich, W. J., I. Valiela, and H. F. Hemond (2001), Relationship between DOC concentration and vadose zone thickness and depth below water table in groundwater of Cape Cod, USA, Biogeosciences, 55(3), 247268.
  • Pavelic, P., B. C. Nicholson, P. J. Dillon, and K. E. Barry (2005), Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water, J. Contam. Hydrol., 77(1-2), 119141.
  • Petrovic, M., M. Kaštelan-macan, and A. J. M. Horvat (1999), Interactive sorption of metal ions and humic acids onto mineral particles, Water Air Soil Pollut., 111(1-4), 4156.
  • Randazzo, A. F., and D. S. Jones (1997), The Geology of Florida, University Press of Florida, Gainesville, Fla.
  • Ratasuk, N., and M. A. Nanny (2007), Characterization and quantification of reversible redox sites in humic substances, Environ. Sci. Technol., 41, 78447850.
  • Rauch, T., and L. Drewes (2004), Assessing the removal potential of soil-aquifer treatment systems for bulk organic matter, Water Sci. Technol., 50(2), 245253.
  • Ritorto, M., E. J. Screaton, J. B. Martin, and P. J. Moore (2009), Relative importance and chemical effects of diffuse and focused recharge in an eogenetic karst aquifer: An example from the unconfined upper Floridan aquifer, USA, Hydrogeol. J., 17(7), 16871698.
  • Sarbu, S. M., T. C. Kane, and B. K. Kinkle (1996), A chemoautotrophically based cave ecosystem, Science, 272(5270), 19531955.
  • Schlautman, M. A., and J. J. Morgan (1994), Adsorption of aquatic humic substances on colloidal-size aluminum-oxide particles - Influence of solution chemistry, Geochim. Cosmochim. Acta, 58(20), 42934303.
  • Schwarzenbach, R. P., P. M. Gschwend, and D. M. Imboden (2003), Environmental Organic Chemistry, 2nd ed., pp. 280-283, Wiley-Interscience, New York.
  • Screaton, E., J. B. Martin, B. Ginn, and L. Smith (2004), Conduit properties and karstification in the unconfined Floridan Aquifer, Ground Water, 42(3), 338346.
  • Simon, K. S., J. Gibert, P. Petitot, and R. Laurent (2001), Spatial and temporal patterns of bacterial density and metabolic activity in a karst aquifer, Arch. Hydrobiol., 151(1), 6782.
  • Thomas, M. M., J. A. Clouse, and J. M. Longo (1993), Adsorption of organic-compounds on carbonate minerals. 3. Influence on dissolution rates, Chem. Geol., 109(1-4), 227237.
  • USEPA (1983), Methods for the Chemical Analysis of Water and Wastes, pp. 552, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio.
  • Vacher, H. L., and J. E. Mylroie (2002), Eogenetic karst from the perspective of an equivalent porous medium, Carbonates Evaporates, 17(2), 182196.
  • Vlasceanu, L., S. M. Sarbu, A. S. Engel, and B. K. Kinkle (2000), Acidic cave-wall biofilms located in the Frasassi Gorge, Italy, Geomicrobiol. J., 17(2), 125-139.
  • Worthington, S. R. H. (1994), Flow velocities in unconfined carbonate aquifers, Cave Karst Sci., 21, 2122.
  • Wu, Y. (2003), Mechanism analysis of hazards caused by the interaction between groundwater and geo-environment, Environ. Geol., 44(7), 811819.
  • Wu, Y. T., and C. Grant (2002), Effect of chelation chemistry of sodium polyaspartate on the dissolution of calcite, Langmuir, 18(18), 68136820.