SEARCH

SEARCH BY CITATION

References

  • Asner, G. P. (1998), Biophysical and biochemical sources of variability in canopy reflectance, Remote Sens. Environ., 64(3), 234487.
  • Asner, G., and R. Martin (2008), Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels, Remote Sens. Environ., 112(10), 39583970.
  • Asner, G. P., R. E. Martin, A. Ford, D. Metcalfe, and M. Liddell (2009), Leaf chemical and spectral diversity in Australian tropical forests, Ecol. Appl., 19(1), 236253.
  • Bauerle, W. L., R. Oren, D. A. Way, S. S. Qian, P. C. Stoy, P. E. Thornton, J. D. Bowden, F. M. Hoffman, and R. F. Reynolds (2012), Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling, Proc. Natl. Acad. Sci. U. S. A., 109(22), 86128617.
  • Bence, J. R. (1995), Analysis of short time series: Correcting for autocorrelation, Ecology, 76(2), 628639.
  • Chapin, F. S., P. A. Matson, and P. M. Vitousek (2011), Principles of Terrestrial Ecosystem Ecology, 2nd ed., Springer, New York.
  • Chen, J., P. Jönsson, M. Tamura, Z. Gu, B. Matsushita, and L. Eklundh (2004), A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter, Remote Sens. Environ., 91(3–4), 332344.
  • Damesin, C. (2003), Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica: From the seasonal pattern to an annual balance, New Phytol., 158(3), 465475.
  • Demmig-Adams, B., and W. W. Adams (2000), Photosynthesis: Harvesting sunlight safely, Nature, 403(6768), 371374.
  • Demmig-Adams, B., and W. W. Adams (2002), Antioxidants in photosynthesis and human nutrition, Science, 298(5601), 21492153.
  • Ellsworth, D. S., and P. B. Reich (1992), Leaf mass per area, nitrogen content and photosynthetic carbon gain in Acer saccharum seedlings in contrasting forest light environments, Funct. Ecol., 6(4), 423435.
  • Elmore, A. J., S. M. Guinn, B. J. Minsley, and A. D. Richardson (2012), Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests, Global Change Biol., 18(2), 656674.
  • Field, C., and H. A. Mooney (1983), Leaf age and seasonal effects on light, water, and nitrogen use efficiency in a California shrub, Oecologia, 56(2), 348355.
  • Fisher, J., and J. Mustard (2007), Cross-scalar satellite phenology from ground, Landsat, and MODIS data, Remote Sens. Environ., 109, 261273.
  • Fisher, J., J. Mustard, and M. Vadboncoeur (2006), Green leaf phenology at Landsat resolution: Scaling from the field to the satellite, Remote Sens. Environ., 100, 265279.
  • Fitter, A. H., and R. S. Fitter (2002), Rapid changes in flowering time in British plants, Science, 296(5573), 16891691.
  • Foley, S., B. Rivard, G. Sanchez-Azofeifa, and J. Calvo (2006), Foliar spectral properties following leaf clipping and implications for handling techniques, Remote Sens. Environ., 103(3), 265275.
  • Foster, D., B. Hall, S. Barry, S. Clayden, and T. Parshall (2002), Cultural, environmental and historical controls of vegetation patterns and the modern conservation setting on the island of Martha's Vineyard USA, J. Biogeogr., 29, 13811400.
  • Gamon, J. A., C. B. Field, M. L. Goulden, K. L. Griffin, A. E. Hartley, G. Joel, J. Peñuelas, and R. Valentini (1995), Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types, Ecol. Appl., 5, 2841.
  • Gillespie, A. R., A. B. Kahle, and R. E. Walker (1987), Color enhancement of highly correlated images. II. Channel ratio and “chromaticity” transformation techniques, Remote Sens. Environ., 22(3), 343365.
  • Gitelson, A. A., G. P. Keydan, and M. N. Merzlyak (2006), Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves, Geophys. Res. Lett., 33, L11402, doi:10.1029/2006GL026457.
  • Gond, V., D. G. G. de Pury, F. Veroustraete, and R. Ceulemans (1999), Seasonal variations in leaf area index, leaf chlorophyll, and water content; scaling-up to estimate fAPAR and carbon balance in a multilayer, multispecies temperate forest, Tree physiology, 19(10), 673679.
  • Henneken, R., V. Dose, C. Schleip, and A. Menzel (2013), Detecting plant seasonality from webcams using Bayesian multiple change point analysis, Agric. For. Meteorol., 168(0), 177185.
  • Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira (2002), Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83(1–2), 195213.
  • Hufkens, K., M. Friedl, O. Sonnentag, B. H. Braswell, T. Milliman, and A. D. Richardson (2012), Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology, Remote Sens. Environ., 117(0), 307321.
  • Jacquemoud, S., and F. Baret (1990), PROSPECT: A model of leaf optical properties spectra, Remote Sens. Environ., 34(2), 7591.
  • Jacquemoud, S., W. Verhoef, F. Baret, C. Bacour, P. J. Zarco-Tejada, G. P. Asner, C. François, and S. L. Ustin (2009), PROSPECT + SAIL models: A review of use for vegetation characterization, Remote Sens. Environ., 113(1), S56S66.
  • Jurik, T. W. (1986), Temporal and spatial patterns of specific leaf weight in successional northern hardwood tree species, Am. J. Bot., 73(8), 10831092.
  • Keller, M., D. Schimel, W. W. Hargrove Jr., and F. M. Hoffman (2008), A continental strategy for the National Ecological Observatory Network (NEON), Front. Ecol. Environ., 6(5), 282284.
  • Killingbeck, K. T. (1996), Nutrients in Senesced leaves: Keys to the search for potential resorption and resorption proficiency, Ecology, 77(6), 17161727.
  • Lewandowska, M., and P. Jarvis (1977), Changes in chlorophyll and carotenoid content, specific leaf area and dry weight fraction in Sitka spruce, in response to shading and season, New Phytol., 79(2), 247256.
  • Liang, S. (2003), Quantitative Remote Sensing of Land Surfaces, Wiley-Interscience, Hoboken, NJ, America.
  • Lichtenthaler, H. K., and C. Buschmann (2001), Chlorophylls and carotenoids: Measurement and characterization by UV–VIS spectroscopy, in Current Protocols in Food Analytical Chemistry, pp. 705758, John Wiley, New York.
  • Peng, Y., A. A. Gitelson, G. Keydan, D. C. Rundquist, and W. Moses (2011), Remote estimation of gross primary production in maize and support for a new paradigm based on total crop chlorophyll content, Remote Sens. Environ., 115(4), 978989.
  • Peñuelas, J., T. Rutishauser, and I. Filella (2009), Phenology feedbacks on climate change, Science, 324(5929), 887888.
  • Poorter, H., Ü. Niinemets, L. Poorter, I. J. Wright, and R. Villar (2009), Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis, New Phytol., 182(3), 565588.
  • Richardson, A. D., and J. O'Keefe (2009), Phenological differences between understory and overstory: A case study using the long-term Harvard Forest records, in Phenology of Ecosystem Processes, edited by A. Noormets, pp. 87117, Springer Science, New York.
  • Richardson, A. D., B. Braswell, D. Hollinger, J. Jenkins, and S. Ollinger (2009), Near-surface remote sensing of spatial and temporal variation in canopy phenology, Ecol. Appl., 19(6), 14171428.
  • Richardson, A. D., et al. (2010), Influence of spring and autumn phenological transitions on forest ecosystem productivity, Philos. Trans. R. Soc. B: Biological Sciences, 365(1555), 32273246.
  • Richardson, A. D., et al. (2012), Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis, Global Change Biol., 18(2), 566584.
  • Richardson, A. D., T. F. Keenan, M. Migliavacca, Y. Ryu, O. Sonnentag, and M. Toomey (2013), Climate change, phenology, and phenological control of vegetation feedbacks to the climate system, Agric. For. Meteorol., 169(0), 156173.
  • Rosenzweig, C., G. Casassa, D. J. Karoly, A. Imeson, C. Liu, A. Menzel, S. Rawlins, T. L. Root, B. Seguin, and P. Tryjanowski (2007), Assessment of observed changes and responses in natural and managed systems, in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by M. L. Parry et al., pp. 79131, Cambridge Univ. Press, Cambridge, U. K.
  • Samanta, A., Y. Knyazikhin, L. Xu, R. E. Dickinson, R. Fu, M. H. Costa, S. S. Saatchi, R. R. Nemani, and R. B. Myneni (2012), Seasonal changes in leaf area of Amazon forests from leaf flushing and abscission, J. Geophys. Res., 117, G01015, doi:10.1029/2011JG001818.
  • Schneider, C. A., W. S. Rasband, and K. W. Eliceiri (2012), NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 9(7), 671675.
  • Schultz, J. C., P. J. Nothnagle, and I. T. Baldwin (1982), Seasonal and individual variation in leaf quality of two northern hardwoods tree species, Am. J. Bot., 69(5), 753759.
  • Schwartz, M. D., R. Ahas, and A. Aasa (2006), Onset of spring starting earlier across the Northern Hemisphere, Global Change Biol., 12(2), 343351.
  • Shipley, B. (2002), Cause and Correlation in Biology: A User's Guide to Path Analysis Structural Equations and Causal Inference, Cambridge Univ. Press, Cambridge.
  • Sims, D. A., and J. A. Gamon (2002), Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages, Remote Sens. Environ., 81(2–3), 337354.
  • Slaton, M. R., E. Raymond Hunt, and W. K. Smith (2001), Estimating near-infrared leaf reflectance from leaf structural characteristics, Am. J. Bot., 88(2), 278284.
  • Sonnentag, O., K. Hufkens, C. Teshera-Sterne, A. M. Young, M. Friedl, B. H. Braswell, T. Milliman, J. O'Keefe, and A. D. Richardson (2012), Digital repeat photography for phenological research in forest ecosystems, Agric. For. Meteorol., 152(0), 159177.
  • Toomey, M. P., M. A. Friedl, K. Hufkens, O. Sonnentag, T. E. Milliman, S. Frolking, and A. D. Richardson (2012), Monitoring of phenological control on ecosystem fluxes using digital cameras and eddy covariance data, American Geophysical Union Fall Meeting, San Francisco.
  • Ustin, S. L., A. A. Gitelson, S. Jacquemoud, M. Schaepman, G. P. Asner, J. A. Gamon, and P. Zarco-Tejada (2009), Retrieval of foliar information about plant pigment systems from high resolution spectroscopy, Remote Sens. Environ., 113(Supplement 1), S67S77.
  • Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg, and F. Bairlein (2002), Ecological responses to recent climate change, Nature, 416(6879), 389395.
  • Wilson, K. B., D. D. Baldocchi, and P. J. Hanson (2001), Leaf age affects the seasonal pattern of photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest, Plant Cell Environ., 24(6), 571583.
  • Wright, I. J., et al. (2004), The worldwide leaf economics spectrum, Nature, 428(6985), 821827.
  • Xiao, X., Q. Zhang, B. Braswell, S. Urbanski, S. Boles, S. Wofsy, B. Moore Iii, and D. Ojima (2004), Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data, Remote Sens. Environ., 91(2), 256270.
  • Yang, X., J. F. Mustard, J. Tang, and H. Xu (2012), Regional-scale phenology modeling based on meteorological records and remote sensing observations, J. Geophys. Res., 117, G03029, doi:10.1029/2012JG001977.
  • Zhang, X., and M. D. Goldberg (2011), Monitoring fall foliage coloration dynamics using time-series satellite data, Remote Sens. Environ., 115(2), 382391.
  • Zhang, X., M. Friedl, C. Schaaf, A. Strahler, J. Hodges, F. Gao, B. Reed, and A. Huete (2003), Monitoring vegetation phenology using MODIS, Remote Sens. Environ., 84, 471475.
  • Zhang, Y., J. M. Chen, and S. C. Thomas (2007), Retrieving seasonal variation in chlorophyll content of overstory and understory sugar maple leaves from leaf-level hyperspectral data, Can. J. Remote Sens., 33(5), 406415.