SEARCH

SEARCH BY CITATION

References

  • Aber, J. D., K. J. Nadelhoffer, P. Steudler, and J. M. Melillo (1989), Nitrogen saturation in forest ecosystems, BioScience, 39, 378386.
  • Aber, J. D., J. M. Melillo, K. J. Nadelhoffer, J. Pastor, and R. D. Boone (1991), Factors controlling nitrogen cycling and nitrogen saturation in northern temperate forest ecosystems, Ecol. Appl., 1, 303315.
  • Allen, H. L., P. M. Dougherty, and R. G. Campbell (1990), Manipulation of water and nutrients: Practice and opportunity in southern U.S. pine forests, Forest Ecol. Manag., 30, 437453.
  • Bengtsson, G., P. Bengtson, and K. F. Mansson (2003), Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity, Soil Biol. Biochem., 35, 143154.
  • Billings, S., and D. Richter (2006), Changes in stable isotopic signatures of soil nitrogen and carbon during 40 years of forest development, Oecologia, 148, 325333.
  • Billings, S., J. Lichter, S. E. Ziegler, B. A. Hungate, and B. D. Richter (2010), A call to investigate drivers of soil organic matter retention vs. mineralization in a high CO2 world, Soil Biol. Biochem., 42, 665668.
  • Blagodatskaya, E., and Y. Kuzyakov (2008), Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: A critical review, Biol. Fertil. Soils, 45, 115131.
  • Bolton, H., Jr., J. L. Smith, and S. O. Link (1993), Soil microbial biomass and activity of a disturbed and undisturbed shrub-steppe ecosystem, Soil Biol. Biochem., 25, 545552.
  • Burger, J. A., and R. A. Kluender (1982), Site preparation—Piedmont, pp. 5874, Symposium on loblolly pine ecosystem (East Region), North Carolina State University, Raleigh, NC. 8–10 Dec. 1982, USDA-FS, Washington, D. C.
  • Chapin, F. S., III, P. Matson, and H. Mooney (2002), Principles of Terrestrial Ecosystem Ecology, Springer-Verlag, New York.
  • Choi, W. J., S. X. Chang, and J. Bhatti (2007), Drainage affects tree growth and C and N dynamics in a minerotrophic peatland, Ecology, 88, 443453.
  • Clark, J. D., and A. H. Johnson (2011), Carbon and nitrogen accumulation in post-agricultural forest soils of western New England, Soil Sci. Soc. Am. J., 75, 15301542.
  • Cleveland, C. C., et al. (1999), Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems, Global Biogeochem. Cy., 13, 623645.
  • Cole, D. W., and H. Van Miegroet (1989), Chronosequence: A technique to assess ecosystem dynamics, in Research Strategies for Long-Term Site Productivity, Seattle WA, vol. 8, edited by W. J. Dyck and C. A. Mees, pp. 523, Forest Research Institute, N. Z.
  • Compton, J. E., T. D. Hooker, and S. S. Perakis (2007), Ecosystem N distribution and δ15N during a century of forest regrowth after agricultural abandonment, Ecosystems, 10, 11971208.
  • Conant, R. T., et al. (2011), Temperature and soil organic matter decomposition rates—Synthesis of current knowledge and a way forward, Global Change Biol., 17, 33923404.
  • Crow, T. R., G. D. Mroz, and M. R. Gale (1991), Regrowth and nutrient accumulations following whole-tree harvesting of a maple-oak forest, Can. J. For. Res., 21, 13051315.
  • Davidson, E. A., S. C. Hart, C. A. Shanks, and M. K. Firestone (1991), Measuring gross nitrogen mineralization, immobilization, and nitrification by 15N isotopic pool dilution in intact soil cores, J. Soil Sci., 42, 335349.
  • Davidson, E. A., S. C. Hart, and M. K. Firestone (1992), Internal cycling of nitrate in soils of a mature coniferous forest, Ecology, 73, 11481156.
  • Diochon, A., and L. Kellman (2008), Natural abundance measurements of 13C indicate increased deep soil carbon mineralization after forest disturbance, Geophys. Res. Lett., 35, L14402, doi:10.1029/2008GL034795.
  • Diochon, A., and L. Kellman (2009), Physical fractionation of soil organic matter: Destabilisation of deep soil carbon following harvesting of a temperate coniferous forest, J. Geophys. Res., 114, G01016, doi:10.1029/2008JG000844.
  • Diochon, A., L. Kellman, and H. Beltrami (2009), Looking deeper: An investigation of soil carbon losses following harvesting from a managed northeastern red spruce (Picea rubens Sarg.) forest chronosequence, Forest Ecol. Manag., doi:10.1016/j.foreco.2008.09.015.
  • Drury, C. F., S. C. Hart, and X. M. Yan (2007), Nitrification techniques for soils, in Soil Sampling and Methods of Analysis, 2nd ed., edited by Carter, M. R., Gregorich, E. G., pp. 495513, Canadian Society of soil Science, CRC Press Taylor and Francis Group, Boca Raton, Fla.
  • Fontaine, S., S. Barot, P. Barre, N. Bdioui, B. Mary, and C. Rumpel (2007), Stability of organic carbon in deep soil layers controlled by fresh carbon supply, Nature, 450, 277280.
  • Fox, T. R., J. A. Burger, and R. E. Kreh (1986), Effects of site preparation on nitrogen dynamics in the southern Piedmont, Forest Ecol. Manag., 15, 241256.
  • Frazer, D. W., J. G. McColl, and R. F. Powers (1990), Soil nitrogen mineralization in a clearcutting chronosequence in a northern California conifer forest, Soil Sci. Soc. Am. J., 54, 11451152.
  • Galloway, J., A. Townsend, J. Erisman, M. Bekunda, Z. Cai, J. Freney, L. Martinelli, S. Seitzinger, and M. Sutton (2008), Transformation of the Nitrogen cycle: Recent trends, questions, and potential solutions, Science, 320, 889892.
  • Gruber, N., and J. N. Galloway (2008), An Earth-system perspective of the global nitrogen cycle, Nature, 451, 293296.
  • Handley, L. L., and C. M. Scrimgeour (1997), Terrestrial plant ecology and 15N natural abundance: The present limits to interpretation for uncultivated systems with original data from a Scottish old field, Adv. Ecol. Res., 27, 133212.
  • Hart, S. C., G. E. Nason, D. D. Myrold, and D. A. Perry (1994a), Dynamics of gross nitrogen transformations in an old-growth forest: The carbon connection, Ecology, 75, 880891.
  • Hart, S., J. Stark, E. Davidson, and M. K. Firestone (1994b), Nitrogen mineralization, immobilization, and nitrification, in Methods of Soil Analysis. Part 2: Microbiological and Biochemical Properties, edited by R. Weaver et al., pp. 9851018, Soil Science Society of America, Madison, Wisconsin.
  • Hendrickson, O. Q., L. Chatarpaul, and D. Burgess (1989), Nutrient cycling following whole-tree and conventional harvest in northern mixed forest, Can. J. For. Res., 19, 725735.
  • Henn, M. R., and I. H. Chapela (2001), Ecophysiology of 13C and 15N isotopic fractionation in forest fungi and the roots of the saprotrhophic-mycorrhizal divide, Oecologia, 128, 480487.
  • Hobbie, E., and A. Ouimette (2009), Controls of nitrogen isotope patterns in soil profiles, Biogeochemistry, 95, 355371.
  • Hobbie, E. A., A. Jumpponene, and J. Trappe (2005), Foliar and fungal 15N:14N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: Testing analystical models, Oecologia, 146, 258268.
  • Hogberg, P. L., H. Hogbom, M. Schinkel, C. Hogberg, C. Johannisson, and H. Wallmark (1996), 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils, Oecologia, 108, 207214.
  • Holmes, W. E., and D. R. Zak (1999), Soil microbial control of nitrogen loss following clear-cut harvest in northern hardwood ecosystems, Ecol. Appl., 9, 202215.
  • Houston, A. P. C., S. Visser, and R. A. Lautenschlager (1998), Microbial processes and fungal community structure in soils from clear-cut and unharvested areas of two mixed wood forests, Can. J. Bot., 76, 630640.
  • Huntington, T. G., D. F. Ryan, and S. P. Hamburg (1988), Estimating soil nitrogen and carbon pools in a northern hardwood forest ecosystem, Soil Sci. Soc. Am. J., 52, 11621167.
  • Hurlbert, S. H. (1984), Pseudoreplication and the design of ecological field experiments, Ecol. Monogr., 54, 187211.
  • Idol, T. W., P. E. Pope, and F. Ponder Jr. (2002), Changes in microbial-nitrogen across a 100 year chronosequence of upland hardwood forests, Soil Sci. Soc. Am. J., 66, 16621668.
  • Idol, T. W., P. E. Pope, and F. Ponder Jr. (2003), N mineralization, nitrification, and N uptake across a 100-year chronosequence of upland hardwood forests, Forest Ecol. Manag., 176, 509518.
  • Iversen, C. M., T. D. Hooker, A. T. Classen, and R. J. Norby (2010), Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2], Global Change Biol., doi:10.1111/j.1365-2486.2010.02240.x.
  • Kirkham, D., and W. V. Bartholomew (1954), Equations for following nutrient transformations in soil, utilizing tracer data, Soil Sci. Soc. Am. Proc., 18, 3334.
  • Kirschbaum, M. (2000), Will changes in soil organic carbon act as a positive or negative feedback on global warming?, Biogeochemistry, 48, 2151.
  • Kleber, M., P. S. Nico, A. Plante, T. Filley, M. Kramer, C. Swanston, and P. Sollins (2010), Old and stable soil organic matter is not necessarily recalcitrant: Implications for modeling concepts and temperature sensitivity, Global Change Biol., 17, 10971107.
  • Knoepp, J. D., and W. T. Swank (1997), Forest management effects on surface soil carbon and nitrogen, Soil Sci. Soc. Am. J., 61, 928935.
  • Likens, G., F. Bormann, N. Johnson, D. Fisher, and R. Pierce (1970), Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook Watershed-Ecosystem, Ecol. Monogr., 40, 2347.
  • Magnani, F., et al. (2007), Human footprint in the carbon cycle of temperate and boreal forests, Nature, 447, 848852.
  • Marques, R., J. Ranger, S. Yillette, and A. Granier (1997), Nutrient dynamics in a chronosequence of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands on the Beaujolais Mounts (France). 2. Quantitative approach, Forest Ecol. Manag., 92, 167197.
  • McVicar, K., and L. Kellman (2014), Growing season nitrous oxide fluxes across a 125+ year harvested red spruce forest chronosequence, Biogeochemistry, doi:10.1007/s10533-014-9992-z.
  • Mosseler, A., J. A. Lynds, and J. E. Major (2003), Old-growth forests of the Acadian Forest Region, Environ. Rev., 11, S47S77.
  • Myrold, D. D., and J. M. Tiedje (1986), Simultaneous estimation of several nitrogen cycle rates using 15N: Theory and application, Soil Biol. Biochem., 18, 559568.
  • Neill, C., M. Piccolo, J. Melillo, P. Steudler, and C. Cerri (1999), Nitrogen dynamics in Amazon forest and pasture soils measured by 15N pool dilution, Soil Biol. Biochem., 31, 567572.
  • Neily, P., E. Quigley, D. McCurdy, and B. Stewart (2001), A study of plant diversity in natural and managed forest stands of red spruce in the Liscomb Game Sanctuary, Research Report, Nova Scotia Department of Natural Resources, Halifax.
  • Oren, R., et al. (2001), Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere, Nature, 411, 469472.
  • Pastor, J., J. D. Aber, C. A. McClaugherty, and J. M. Melillo (1984), Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin, Ecology, 65, 256268.
  • Perakis, S. S., and L. O. Hedin (2002), Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds, Nature, 415, 416419.
  • Piatek, K. B., and H. L. Allen (1999), Nitrogen mineralization in a pine plantation 15 years after harvesting and site preparation, Soil Sci. Soc. Am. J., 63, 990998.
  • Pickett, S. T. A. (1989), Space for time substitution as an alternative to long-term studies, in Long-term Studies in Ecology, edited by G. E. Likens, pp. 7188, Wiley, Chickester.
  • Prescott, C. E. (1997), Effects of clearcutting and alternative silvicultural systems on rates of decomposition and nitrogen mineralization in a coastal montane coniferous forest, Forest Ecol. Manag., 95, 253260.
  • Prest, D., L. Kellman, and M. Lavigne (2014), Further evidence of mineral soil C and N losses 3 decades following clearcut harvesting in a temperate red spruce forest in central Nova Scotia, Canada, Geoderma, doi:10.1016/j.geoderma.2013.10.00.
  • Reich, P. B., S. E. Hobbie, T. Lee, D. S. Ellsworth, J. B. West, D. Tilman, J. M. H. Knops, S. Naeem, and J. Trost (2006), Nitrogen limitation constraints sustainability of ecosystem response to CO2, Nature, 440, 922925.
  • Reichstein, M., J. Subke, A. Angeli, and J. Tenhunen (2005), Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time?, Global Change Biol., 11, 17541767.
  • Richter, D. D., D. Markewitz, S. E. Trumore, and C. G. Wells (1999), Rapid accumulation and turnover of soil carbon in a re-establishing forest, Nature, 400, 5658.
  • Robinson, D. (2001), δ15N as an integrator of the nitrogen cycle, Tree, 16, 153162.
  • Schilling, E. B., B. G. Lockaby, and R. Rummer (1999), Belowground nutrient dynamics following three harvest intensities on the Pearl River Floodplain, Mississippi, Soil Sci. Soc. Am. J., 63, 18561868.
  • Schimel, J. P., and J. Bennett (2004), Nitrogen mineralization: Challenges of a changing paradigm, Ecology, 85, 591602.
  • Schlesinger, W. H., and J. Lichter (2001), Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2, Nature, 411, 466469.
  • Schmidt, M., M. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. Janssens, and S. Trumbore (2011), Persistence of soil organic matter as an ecosystem property, Nature, 478, 4956.
  • Smith, S. E., and D. J. Read (1997), Mycorrhizal Symbiosis, Academic Press, San Diego, Calif.
  • Sohi, S. P., N. Mahieu, J. R. M. Arah, D. S. Powlson, B. Madari, and J. L. Gaunt (2001), A procedure for isolating soil organic matter fractions suitable for modeling, Soil Sci. Soc. Am. J., 65, 11211128.
  • Stark, J. M., and S. C. Hart (1997), High rates of nitrification and nitrate turnover in undisturbed coniferous forests, Nature, 385, 6164.
  • Taylor, L. A., M. A. Arthur, and R. D. Yanai (1999), Forest floor microbial biomass across a northern hardwood successional sequence, Soil Biol. Biochem., 31, 431439.
  • Trap, J., F. Bureau, M. Akpa-Vinecslas, R. Chevalier, and M. Aubert (2009), Changes in soil N mineralization and nitrification pathways along a mixed forest chronosequence, Forest Ecol. Manag., 253, 12841293.
  • Turunen, J., N. T. Roulet, and T. R. Moore (2004), Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada, Global Biogeochem. Cy., 18, GB3002, doi:10.1029/2003GB002154.
  • Vitousek, P. M., and P. A. Matson (1985), Disturbance, nitrogen availability, and nitrogen losses in an intensively managed loblolly pine plantation, Ecology, 66, 13601376.
  • Vitousek, P. M., J. R. Gosz, C. C. Grier, J. M. Melillo, and W. A. Reiners (1982), A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems, Ecol. Monogr., 52, 155177.
  • Vitousek, P. M., S. W. Andariese, P. A. Matson, L. Morris, and R. L. Sanford (1992), Effects of harvest intensity, site preparation, and herbicide use on soil nitrogen transformations in a young loblolly pine plantation, Forest Ecol. Manag., 49, 277292.
  • Waide, J. B., W. H. Caskey, R. L. Todd, and L. R. Boring (1988), Changes in soil nitrogen pools and transformations following forest clear-cutting, in Forest Hydrology and Ecology at Coweeta. Ecological Studies, vol. 66, edited by W. T. Swank and D. A. Crossley Jr., pp. 221232, Springer-Verlag, New York.
  • Winkler, J. P., R. S. Cherry, and W. H. Schlesinger (1996), The Q10 relationship of microbial respiration in a temperate forest soil, Soil Biol. Biochem., 28, 10671072.
  • Zerva, A., and M. Mencuccini (2005), Short-term effects of clearfelling on soil CO2, CH4, and N2O fluxes in a Sitka spruce plantation, Soil Biol. Biochem., 37, 20252036.
  • Zummo, L., and A. Friedland (2011), Soil carbon release along a gradient of physical disturbance in a harvested northern hardwood forest, Forest Ecol. Manag., 261, 10161026.