Radio Science

Polarization-insensitive FSS-based perfect metamaterial absorbers for GHz and THz frequencies



New perfect frequency selective surface (FSS) metamaterial absorbers (MAs) based on resonator with dielectric configuration are numerically presented and investigated for both microwave and terahertz frequency ranges. Also, to verify the behaviors of the FSS MAs, one of the MAs is experimentally analyzed and tested in the microwave frequency range. Suggested FSS MAs have simple configuration which introduces flexibility to adjust their FSS metamaterial properties and to rescale the structure easily for any desired frequency range. There is no study which simultaneously includes microwave and terahertz absorbers in a single design in the literature. Besides, numerical simulations verify that the FSS MAs could achieve very high absorption levels at wide angles of incidence for both transverse electric and transverse magnetic waves. The proposed FSS MAs and their variations enable many potential application areas in radar systems, communication, stealth technologies, and so on.