SEARCH

SEARCH BY CITATION

References

  • Amrhein, C., and D. L. Suarez (1988), The use of a surface complexation model to describe the kinetics of ligand-promoted dissolution of anorthite, Geochim. Cosmochim. Acta, 52(12), 27852793.
  • Benjamin, M. M. (2002), Water Chemistry, 668 pp., McGraw-Hill, New York.
  • Brady, P. V., and J. V. Walther (1989), Controls on silicate dissolution rate in neutral and basic pH solutions at 25 °C, Geochim. Cosmochim. Acta, 53(11), 28232830.
  • Carroll, S. A., and J. V. Walther (1990), Kaoliniate dissolution at 25 °C, 60 °C, and 80 °C, Am. J. Sci., 290(7), 797810.
  • Ganor, J., J. L. Mogollon, and A. C. Lasaga (1995), The effect of pH on kaolinite dissolution rates and on activation-energy, Geochim. Cosmochim. Acta, 59(6), 10371052.
  • Helgeson, H. C., W. M. Murphy, and P. Aagaard (1984), Thermodynamics and kinetic constraints on reaction-rates among minerals and aqueous-solutions: 2. Rate constants, effective surface-area, and the hydrolysis of feldspar, Geochim. Cosmochim. Acta, 48(12), 24052432.
  • Johnson, J. W., E. H. Oelkers, and H. C. Helgeson (1992), SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C, Comput. Geosci., 18(7), 899947.
  • Kim, D. (2008), Scale-Up of Reactive Flow Through Network Flow Modeling, 88 pp., Stony Brook Univ., Stony Brook, N. Y.
  • Kim, D., and W. B. Lindquist (2011), Dependence of pore-to-core up-scaled reaction rate on flow rate in porous media, Transp. Porous Media, 89(3), 459473.
  • Kim, D., C. A. Peters, and W. B. Lindquist (2011), Up-scaling geochemical reaction rates accompanying acidic CO2-saturated brine flow in sandstone aquifers, Water Resour. Res., 47, W01505, doi:10.1029/2010WR009472.
  • Lee, T. C., R. L. Kashyap, and C. N. Chu (1994), Building skeleton models via 3-D medial surface/axis thinning algorithms, CVGIP: Graph. Models Image Proc., 56, 462478.
  • Li, L., C. A. Peters, and M. A. Celia (2006), Upscaling geochemical reaction rates using pore-scale network modeling, Adv. Water Resour., 29(9), 13571370.
  • Li, L., C. A. Peters, and M. A. Celia (2007), Effects of mineral spatial distribution on reaction rates in porous media, Water Resour. Res., 43, W01419, doi:10.1029/2005WR004848.
  • Lindquist, W. B., A. Venkatarangan, J. Dunsmuir, and T.-f. Wong (2000), Pore and throat size distributions measured from sychrotron X-ray tomographic images of Fontainebleau sandstones, J. Geophys. Res., 105(B9), 21,50821,528, doi:10.1029/2000JB900208.
  • Liu, C., J. Shang, and J. M. Zachara (2011), Multispecies diffusion models: A study of uranyl species diffusion, Water Resour. Res., 47, W12514, doi:10.1029/2011WR010575.
  • Lorensen, W. E., and H. E. Cline (1987), Marching cubes: A high resolution 3-D surface construction, ACM Comput. Graph., 21, 163169.
  • Morel, F., and J. G. Hering (1993), Principles and Applications of Aquatic Chemistry, 596 pp., John Wiley, New York.
  • Nagy, K. L., and A. C. Lasaga (1993), Simultaneous precipitation kinetics of kaolinite and gibbsite at 80 °C and pH 3, Geochim. Cosmochim. Acta, 57(17), 43294335.
  • Nagy, K. L., A. E. Blum, and A. C. Lasaga (1991), Dissolution and precipitation of kaolinite at 80 °C and pH 3—The dependence on solution saturation state, Am. J. Sci., 291(7), 649686.
  • Oelkers, E. H., and J. Schott (1995), Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysis, Geochim. Cosmochim. Acta, 59(24), 50395053.
  • Oh, W., and W. B. Lindquist (1999), Image thresholding by indicator kriging, IEEE Trans. Pattern Anal. Mach. Intell., 21(7), 590602.
  • Patzek, T. W., (2001), Verification of a complete pore network simulator of drainage and imbibition, SPE J., 6, 155–156.
  • Peters, C. A. (2009), Accessibilities of reactive minerals in consolidated sedimentary rock: An imaging study of three sandstones, Chem. Geol., 265(1–2), 198208.
  • Serra, J. (1982), Image Analysis and Mathematical Morphology, 610 pp., Academic, London.
  • Shin, H., W. B. Lindquist, D. L. Sahagian, and S. R. Song (2005), Analysis of the vesicular structure of basalts, Comput. Geosci., 31(4), 473487.
  • Sholokova, Y., D. Kim, and W. B. Lindquist (2009), Network flow modeling via lattice-Boltzmann based channel conductance, Adv. Water Resour., 32(2), 205212.
  • Steefel, C. I., and K. T. B. MacQuarrie (1996), Approaches to modeling of reactive transport in porous media, in Reactive Transport in Porous Media, edited by P. C. Lichtner, C. I. Steefel, and E. H. Oelkers, pp. 83125, Mineral. Soc. of Am., Washington, D. C.
  • Trefethen, L. N., and D. Bau (1997), Numerical Linear Algebra, 361 pp., Society of Industrial and Applied Mathematics (SIAM), Philadelphia, Pa.