SEARCH

SEARCH BY CITATION

References

  • Arabkhedri, M., F. Lai, I. Noor-Akma, and M. Mohamad-Roslan (2010), An application of adaptive cluster sampling for estimating total suspended sediment load, Hydrol. Res., 41(1), 6373.
  • Aulenbach, B. T., and R. P. Hooper (2006), The composite method: An improved method for stream-water solute load estimation, Hydrol. Processes, 20(14), 30293047.
  • Baker, D. (1985), Regional water quality impacts of intensive row-crop agriculture: A Lake Erie basin case study, J. Soil Water Conserv., 40(1), 125132.
  • Bowes, M. J., W. A. House, R. A. Hodgkinson, and D. V. Leach (2005), Phosphorus-discharge hysteresis during storm events along a river catchment: The River Swale, UK, Water Res., 39(5), 751762, doi:10.1016/j.watres.2004.11.027.
  • Chapra, S. (2008), Surface Water-Quality Modeling, 835 pp., Waveland Press, Long Grove, Ill.
  • Clesceri, L. S., A. E. Greenberg, R. R. Trussell, and M. A. H. Franson (1989), Standard Methods for the Examination of Water and Wastewater, 17th ed., Am. Public Health Assoc., Washington, D. C.
  • Cohn, T. A. (2005), Estimating contaminant loads in rivers: An application of adjusted maximum likelihood to type 1 censored data, Water Resour. Res., 41, W07003, doi:10.1029/2004WR003833.
  • Cohn, T. A., D. L. Caulder, E. J. Gilroy, L. D. Zynjuk, and R. M. Summers (1992), The validity of a simple statistical model for estimating fluvial constituent loads: An empirical study involving nutrient loads entering Chesapeake Bay, Water Resour. Res., 28(9), 23532363, doi:10.1029/92WR01008.
  • Cohn, T. A., L. L. Delong, E. J. Gilroy, R. M. Hirsch, and D. K. Wells (1989), Estimating constituent loads, Water Resour. Res., 25(5), 937942.
  • Creed, I. F., and L. E. Band (1998), Export of nitrogen from catchments within a temperate forest: Evidence for a unifying mechanism regulated by variable source area dynamics, Water Resour. Res., 34(11), 31053120, doi:10.1029/98WR01924.
  • Eaton, A. D., L. S. Clesceri, A. E. Greenberg, and M. A. H. Franson (1995), Standard Methods for the Examination of Water and Wastewater, 19th ed., Am. Public Health Assoc., Washington, D. C.
  • Eaton, A. D., L. S. Clesceri, A. E. Greenberg, and M. A. H. Franson (1998), Standard Methods for the Examination of Water and Wastewater, 20th ed., Am. Public Health Assoc., Washington, D. C.
  • Eaton, A. D., L. S. Clesceri, E. W. Rice, A. E. Greenberg, and M. A. H. Franson (2005), Standard Methods for the Examination of Water and Wastewater, 21th ed., Ame. Public Health Assoc., Washington, D. C.
  • Ferguson, R. (1986), River loads underestimated by rating curves, Water Resour. Res., 22(1), 7476.
  • Greenberg, A. E., J. J. Connors, D. Jenkins, and M. A. H. Franson (1980), Standard Methods for the Examination of Water and Wastewater, 15th ed., Am. Public Health Assoc., Washington, D. C.
  • Greenberg, A. E., J. J. Connors, D. Jenkins, and M. A. H. Franson (1985), Standard Methods for the Examination of Water and Wastewater, 16th ed., Am. Public Health Assoc., Washington, D. C.
  • Greenberg, A. E., L. S. Clesceri, A. D. Eaton, and M. A. H. Franson (1992), Standard Methods for the Examination of Water and Wastewater, 18th ed., Am. Public Health Assoc., Washington, D. C.
  • Griffin, D., T. Grizzard, C. Randall, D. Helsel, and J. Hartigan (1980), Analysis of non-point pollution export from small catchments, J. Water Pollut. Control Fed., 52(4), 780790.
  • Haggard, B. E., T. S. Soerens, W. R. Green, and R. P. Richards (2003), Using regression methods to estimate stream phosphorus loads at the Illinois River, Arkansas, Am. Soc. Agric. Eng., 19(2), 187194.
  • Harmel, R., R. Cooper, R. Slade, R. Haney, and J. Arnold (2006), Cumulative uncertainty in measured streamflow and water quality data for small watersheds, Trans. ASABE, 49(3), 689701.
  • Helsel, D., and R. Hirsch (2002), Statistical Methods in Water Resources, U.S. Geol. Surv., Reston, Va.
  • Hewlett, J. D., and A. R. Hibbert (1967), Factors affecting the response of small watersheds to precipitation in humid areas, in Forest Hydrology. Proceedings of International Symposium on Forest Hydrology, edited by W. E. Sopper and H. W. Lull, pp. 275290, Pergamon, New York.
  • Horowitz, A. J. (2003), An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations, Hydrol. Processes, 17(17), 33873409.
  • Irvine, K. N., and J. J. Drake (1987), Process-oriented estimation of suspended sediment concentration, J. Am. Water Resour. Assoc., 23(6), 10171025, doi:10.1111/j.1752-1688.1987.tb00851.x.
  • Kronvang, B., A. Laubel, and R. Grant (1997), Suspended sediment and particulate phosphorus transport and delivery pathways in an arable catchment, Gelbæk stream, Denmark, Hydrol. Processes, 11(6), 627642.
  • Krueger, T., J. N. Quinton, J. Freer, C. J. Macleod, G. S. Bilotta, R. E. Brazier, P. Butler, and P. M. Haygarth (2009), Uncertainties in data and models to describe event dynamics of agricultural sediment and phosphorus transfer, J. Environ. Qual., 38(3), 11371148, doi:10.2134/jeq2008.0179.
  • Langland, M. J., J. P. Raffensperger, D. L. Moyer, J. M. Landwehr, and G. E. Schwarz (2006), Changes in Streamflow and Water Quality in Selected Nontidal Basins in the Chesapeake Bay Watershed, 1985–2004, U.S. Geol. Surv. Sci. Invest. Rep. 2006-5178, 75 pp.
  • Lawler, D. M., G. E. Petts, I. D. L. Foster, and S. Harper (2006), Turbidity dynamics during spring storm events in an urban headwater river system: The Upper Tame, West Midlands, UK, Sci. Total Environ., 360(1–3), 109126, doi:10.1016/j.scitotenv.2005.08.032.
  • Lee, J. H., K. W. Bang, L. H. Ketchum, J. S. Choe, and M. J. Yu (2002), First flush analysis of urban storm runoff, Sci. Total Environ., 293(1–3), 163175, doi:10.1016/s0048-9697(02)00006-2.
  • Markus, M., and M. Demissie (2006), Predictability of annual sediment loads based on flood events, J. Hydrol. Eng., 11(4), 354361.
  • Miller, P., R. Mohtar, and B. Engel (2007), Water quality monitoring strategies and their effects on mass load calculation, Trans. ASABE, 50(3), 817829.
  • OWML (2005), An Assessment of the Water Quality Effects of Nitrate in Reclaimed Water Delivered to the Occoquan Reservoir, Report, Occoquan Watershed Monit. Lab., Manassas, Va.
  • Post, H. E., and T. J. Grizzard (1987), The monitoring of stream hydrology and quality using microcomputers, in Symposium on Monitoring, Modleing and Mediating Water Quality, pp. 199207, Am. Water Res. Assoc., Syracuse, N. Y.
  • Quilbé, R., A. N. Rousseau, M. Duchemin, A. Poulin, G. Gangbazo, and J.-P. Villeneuve (2006), Selecting a calculation method to estimate sediment and nutrient loads in streams: Application to the Beaurivage River (Québec, Canada), J. Hydrol., 326(1–4), 295310.
  • Randall, C. W., and T. J. Grizzard (1995), Management of the Occoquan River basin: A 20-year case history, Water Sci. Technol., 32(5–6), 235243, doi:10.1016/0273-1223(95)00668-0.
  • Richards, R., and J. Holloway (1987), Monte Carlo studies of sampling strategies for estimating tributary loads, Water Resour. Res., 23(10), 19391948.
  • Robertson, D. M., and E. D. Roerish (1999), Influence of various water quality sampling strategies on load estimates for small streams, Water Resour. Res., 35(12), 37473759.
  • Runkel, R. L., C. G. Crawford, and T. A. Cohn (2004), Load Estimator (LOADEST): A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers, U.S. Geol. Surv. Tech. and Methods Book 4, chap. A5, 69 pp.
  • Sadeghi, S. H. R., and P. Saeidi (2010), Reliability of sediment rating curves for a deciduous forest watershed in Iran, Hydrol. Sci. J., 55(5), 821831.
  • Sadeghi, S. H. R., T. Mizuyama, S. Miyata, T. Gomi, K. Kosugi, T. Fukushima, S. Mizugaki, and Y. Onda (2008), Development, evaluation and interpretation of sediment rating curves for a Japanese small mountainous reforested watershed, Geoderma, 144(1–2), 198211, doi:10.1016/j.geoderma.2007.11.008.
  • Shih, G., W. Abtew, and J. Obeysekera (1994), Accuracy of nutrient runoff load calculations using time-composite sampling, Trans. ASAE, 37(2), 419429.
  • Shivers, D. E., and G. E. Moglen (2008), Spurious correlation in the USEPA rating curve method for estimating pollutant loads, J. Environ. Eng., 134(8), 610618, doi:10.1061/(asce)0733-9372(2008)134:8(610).
  • Siwek, J., J. P. Siwek, and M. Żelazny (2012), Environmental and land use factors affecting phosphate hysteresis patterns of stream water during flood events (Carpathian Foothills, Poland), Hydrol. Processes, doi:10.1002/hyp.9484.
  • Toor, G. S., R. D. Harmel, B. E. Haggard, and G. Schmidt (2008), Evaluation of regression methodology with low-frequency water quality sampling to estimate constituent loads for ephemeral watersheds in Texas, J. Environ. Qual., 37(5), 18471854, doi:10.2134/jeq2007.0232.
  • Turnbull, L., J. Wainwright, and R. E. Brazier (2011), Nitrogen and phosphorus dynamics during runoff events over a transition from grassland to shrubland in the south-western United States, Hydrol. Processes, 25(1), 117, doi:10.1002/hyp.7806.
  • USEPA (1999), Environmental Outcome-Based Management: Using Environmental Goals and Measures in the Chesapeake Bay Program (EPA 903-R-99-014), Region 3 Chesapeake Bay Program Office, U.S. Environ. Prot. Agency, Annapolis, Md.
  • USEPA (2001), Protecting and Restoring America's Watersheds: Status, Trends, and Initiatives in Watershed Management (EPA-840-R-00–001), Office of Water, U.S. Environ. Prot. Agency, Washington D. C.
  • USEPA (2002), Watershed Analysis and Management (WAM) Guide for States and Communities, U.S. Environ. Prot. Agency, Seattle, Wash.
  • USEPA (2004), Establishing a Chesapeake Bay Nontidal Watershed Water-Quality Network, Report, U.S. Environ. Prot. Agency, Washington, D. C.
  • USEPA (2008a), Handbook for Developing Watershed TMDLs, Report, 168 pp., Handbook for Developing Watershed TMDLs, Washington, D. C.
  • USEPA (2008b), U.S. EPA's 2008 Report on the Environment (Final Report) (EPA-600-R-07-045F), Report, U.S. Environ. Prot. Agency, Washington, D. C.
  • Walling, D. E., and I. D. L. Foster (1975), Variations in the natural chemical concentration of river water during flood flows, and the lag effect: Some further comments, J. Hydrol., 26, 237244, doi:10.1016/0022–1694(75)90005-0.
  • Walling, D. E., and A. Teed (1971), A simple pumping sampler for research into suspended sediment transport in small catchments, J. Hydrol., 13, 325337, doi:10.1016/0022-1694(71)90251-4.
  • Walling, D. E., and B. W. Webb (1988), The reliability of rating curve estimates of suspended sediment yield: some further comments, Sediment Budgets, 174, 337350.
  • Wang, P., L. C. Linker, R. Batiuk, and C. Cerco (2006), Surface analysis of Chesapeake Bay water quality response to different nutrient and sediment loads, J. Environ. Eng., 132(3), 377383.
  • Wilson, C., A. N. T. Papanicolaou, and K. Denn (2012), Partitioning fine sediment loads in a headwater system with intensive agriculture, J. Soils Sediments, 12(6), 966981, doi:10.1007/s11368-012-0504-2.
  • Xu, Z. (2005), A complex, linked watershed-reservoir hydrology and water quality model application for the Occoquan watershed, Virginia, PhD thesis, Virginia Tech, Falls Church, Va.
  • Xu, Z., A. N. Godrej, and T. J. Grizzard (2007), The hydrological calibration and validation of a complexly-linked watershed-reservoir model for the Occoquan Watershed, Virginia, J. Hydrol., 345, 167183, doi:10.1016/j.jhydrol.2007.07.015.
  • Yochum, S. E. (2000), A revised load estimation procedure for the Susquehanna, Potomac, Patuxent, and Choptank Rivers, report, U.S. Geol. Surv., Baltimore, Md.