Pore scale consideration in unstable gravity driven finger flow



[2] To explain the dynamic behavior of the matric potential at the wetting front of gravity driven fingers, we take into account the pressure across the interface that is not continuous and depends on the radius of the meniscus, which is a function of pore size and the dynamic contact angle θd. θd depends on a number of factors including velocity of the water and can be found by the Hoffman-Jiang equation that was modified for gravity effects. By assuming that water at the wetting front imbibes one pore at a time, realistic velocities are obtained that can explain the capillary pressures observed in unstable flow experiments in wettable and water repellent sands.