SEARCH

SEARCH BY CITATION

References

  • Aeschbach-Hertig, W., F. Peeters, U. Beyerle, and R. Kipfer (1999), Interpretation of dissolved atmospheric noble gases in natural waters, Water Resour. Res., 35(9), 27792792.
  • Aeschbach-Hertig, W., F. Peeters, U. Beyerle and R. Kipfer (2000), Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air, Nature, 405(6790), 10401044.
  • Aeschbach-Hertig, W., H. El-Gamal, M. Wieser, and L. Palcsu (2008), Modeling excess air and degassing in groundwater by equilibrium partitioning with a gas phase, Water Resour. Res., 44, W08449, doi:10.1029/2007WR006454.
  • Ballentine, C. J., and C. M. Hall (1999), Determining paleotemperature and other variables by using an error-weighted, nonlinear inversion of noble gas concentrations in water, Geochim. Cosmochim. Acta, 63(16), 23152336.
  • Batlle-Aguilar, J., et al. (2007), Identification of groundwater quality trends in a chalk aquifer threatened by intensive agriculture in Belgium, Hydrogeol. J., 15(8), 16151627.
  • Böhlke, J. K. (2002), Groundwater recharge and agricultural contamination, Hydrogeol. J., 10(1), 153179.
  • Brennwald, M. S., R. Kipfer, and D. M. Imboden (2005), Release of gas bubbles from lake sediment traced by noble gas isotopes in the sediment pore water, Earth Planet. Sci. Lett., 235(1–2), 3144.
  • Broers, H. P., and B. Van der Grift (2004), Regional monitoring of temporal changes in groundwater quality, J. Hydrol., 296(1–4), 192220.
  • Broers, H. P., and F. C. Van Geer (2005), Monitoring strategies at phreatic wellfields: A 3D travel time approach, Ground Water, 43(6), 850862.
  • Broers, H. P., J. Rozemeijer, M. Van De Aa, B. Van Der Grift, and E. A. Buijs (2004), Groundwater quality trend detection at the regional scale: Effects of spatial and temporal variability, in Proceeding of the 4th international Groundwater Quality Conference, vol. 297, p. 50–60, Int. Assoc. of Hydrol. Sci.-Assoc. Int. des Sci. Hydrol. Publ., Waterloo, Canada.
  • Broers, H. P., B. Van Der Grift, J. Griffioen, and R. Heerdink (2007), Modelling reactive transport of diffuse contaminants: Identifying the groundwater contribution to surface water quality, in Groundwater Science and Policy, edited by P. Quevauviller, pp. 630644, R. Soc. of Chem., London, U. K.
  • Broers, H. P., R. Heerdink, A. Visser, and A. Marsman (2012), Aquatempo: Groundwater dating for public water supply wells, TNO Rep. 2012-R10374 (in Dutch), 103 pp., TNO, Utrecht, Netherlands.
  • Busenberg, E., and L. N. Plummer (1992), Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: The alluvium and terrace system of central Oklahoma, Water Resour. Res., 28(9), 22572283.
  • Busenberg, E., and L. N. Plummer (2000), Dating young groundwater with sulfur hexafluoride: Natural and anthropogenic sources of sulfur hexafluoride, Water Resour. Res., 36(10), 30113030.
  • Byrd, R. H., P. Lu, J. Nocedal, and C. Zhu (1995), A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16(5), 11901208.
  • Cirpka, O. A., M. N. Fienen, M. Hofer, E. Hoehn, A. Tessarini, R. Kipfer, and P. K. Kitanidis (2007), Analyzing bank filtration by deconvoluting time series of electric conductivity, Ground Water, 45(3), 318328.
  • Cole, B. E., and S. E. Silliman (1997), Capture zones for passive wells in heterogeneous unconfined aquifers, Ground Water, 35(1), 9298.
  • Cole, B. E., and S. E. Silliman (2000), Utility of simple models for capture zone delineation in heterogeneous unconfined aquifers, Ground Water, 38(5), 665672.
  • Corcho Alvarado, J. A., R. Purtschert, F. Barbecot, C. Chabault, J. Rueedi, V. Schneider, W. Aeschbach-Hertig, R. Kipfer, and H. H. Loosli (2007), Constraining the age distribution of highly mixed groundwater using 39Ar: A multiple environmental tracer (3H/3He, 85Kr, 39Ar, and 14C) study in the semiconfined Fontainebleau Sands Aquifer (France), Water Resour. Res., 43, W03427, doi:10.1029/2006WR005096.
  • De Louw, P. G. B., Y. van der Velde, and S. E. A. T. M. van der Zee (2011), Quantifying water and salt fluxes in a lowland polder catchment dominated by boil seepage: A probabilistic end-member mixing approach, Hydrol. Earth Syst. Sci., 15(7), 21012117.
  • Duffy, C. J., and D.-H. Lee (1992), Base flow response from nonpoint source contamination: Simulated spatial variability in source, structure, and initial condition, Water Resour. Res., 28(3), 905914.
  • Eberts, S. M., J. K. Böhlke, L. J. Kauffman, and B. C. Jurgens (2012), Comparison of particle-tracking and lumped-parameter age-distribution models for evaluating vulnerability of production wells to contamination, Hydrogeol. J., 20(2), 263282.
  • Engesgaard, P., K. H. Jensen, J. Molson, E. O. Frind, and H. Olsen (1996), Large-scale dispersion in a sandy aquifer: Simulation of subsurface transport of environmental tritium, Water Resour. Res., 32(11), 32533266.
  • Etcheverry, D., and P. Perrochet (2000), Direct simulation of groundwater transit-time distributions using the reservoir theory, Hydrogeol. J., 8(2), 200208.
  • EU (2006), Directive 2006/118/EC on the Protection of Groundwater against Pollution and Deterioration, European Union, Brussels, Belgium.
  • Fontes, J. C., and J. M. Garnier (1979), Determination of the initial 14C activity of the total dissolved carbon: A review of the existing model and a new approach, Water Resour. Res., 15(2), 399413.
  • Foster, S. S. D., A. C. Cripps, and A. Smith-Carington (1982), Nitrate leaching to groundwater, Philos. Trans. R. Soc. London B, 296(1082), 477489.
  • Frind, E. O., D. S. Muhammad, and J. W. Molson (2002), Delineation of three-dimensional well capture zones for complex multi-aquifer systems, Ground Water, 40(6), 586598.
  • Gardner, P., and D. K. Solomon (2009), An advanced passive diffusion sampler for the determination of dissolved gas concentrations, Water Resour. Res., 45, W06423, doi:10.1029/2008WR007399.
  • Gehrels, J. C., J. E. M. Peeters, J. J. De Vries, and M. Dekkers (1998), The mechanism of soil water movement as inferred from 18O stable isotope studies, Hydrol. Sci. J., 43(4), 579594.
  • Gelhar, L. W., C. Welty, and K. R. Rehfeldt (1992), A critical review of data on field-scale dispersion in aquifers, Water Resour. Res., 28(7), 19551974.
  • Green, C. T., J. K. Böhlke, B. A. Bekins, and S. P. Phillips (2010), Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer, Water Resour. Res., 46, W08525, doi:10.1029/2009WR008903.
  • Griffioen, J., et al. (2002), Spatial Developments and Groundwater Management. Groundwater Quality, Surface Load and Geochemical Processes (DR 3) (in Dutch), NITG-TNO & R. Haskoning, Utrecht, Netherlands.
  • Griffioen, J., et al. (2003), Spatial Developments and Groundwater Management. Initial Situation of the Holten Public Drinking Water Supply Well Field (DR 5) (in Dutch), NITG-TNO & R. Haskoning, Utrecht, Netherlands.
  • Harrar, W. G., T. O. Sonnenborg, and H. J. Henriksen (2003), Capture zone, travel time, and solute-transport predictions using inverse modeling and different geological models, Hydrogeol. J., 11(5), 536548.
  • Heaton, T. H. E., and J. C. Vogel (1981), “Excess air” in groundwater, J. Hydrol., 50, 201216.
  • Hinsby, K., A. L. Højberg, P. Engesgaard, K. H. Jensen, F. Larsen, L. N. Plummer, and E. Busenberg (2007), Transport and degradation of chlorofluorocarbons (CFCs) in the pyritic Rabis Creek aquifer, Denmark, Water Resour. Res., 43, W10423, doi:10.1029/2006WR005854.
  • IAEA/WMO (2010), Global Network of Isotopes in Precipitation, The GNIP Database, http://isohis.iaea.org. Vienna, Austria.
  • Ivey, S. S., R. W. Gentry, D. Larsen, and J. Anderson (2008), Inverse application of age-distribution modeling using environmental tracers 3H/3He, J. Hydrol. Eng., 13(11), 10021010.
  • Iwaco (1993), Study on the recharge areas of the drinking water abstractions in the province of Overijssel (in Dutch), Final Rep. 22.0641.0, Phase 2, 27 pp., Iwaco, Groningen, Netherlands.
  • Johnson, N. L., S. Kotz, and N. Balakrishnan (1995), Continuous Univariate Distributions, vol. 1, chap. 18 and vol. 2, chap. 29, Wiley, New York.
  • Jurgens, B. C., J. K. Böhlke, and S. M. Eberts (2012), TracerLPM (Version 1): An Excel® workbook for interpreting groundwater age distributions from environmental tracer data, U.S. Geol. Surv. Tech. and Methods Rep. 4-F3, 60 pp., U.S. Geol. Surv., Reston, Va.
  • Kalin, R. M. (1999), Radiocarbon dating of groundwater systems, in Environmental Tracers in Subsurface Hydrology, edited by P. G. Cook and A. Herczeg, pp. 111144, Springer, New York.
  • KNMI (2012), Climate Atlas Longterm Averages 1981–2010, KNMI, De Bilt, Netherlands. [Available at http://www.klimaatatlas.nl/.]
  • Laier, T. (2004), Nitrate monitoring and CFC-age dating of shallow groundwaters—An attempt to check the effect of restricted use of fertilizers, in Nitrate in Groundwaters, IAH Selected Papers on Hydrogeology, edited by L. Razowska-Jaworek and A. Sadurski, pp. 247258, A. A. Balkema, Leiden, Netherlands.
  • Landon, M. K., C. T. Green, K. Belitz, M. J. Singleton, and B. K. Esser (2011), Relations of hydrogeologic factors, groundwater reduction-oxidation conditions, and temporal and spatial distributions of nitrate, Central-Eastside San Joaquin Valley, California, USA, Hydrogeol. J., 19(6), 12031224.
  • Larocque, M., P. G. Cook, K. Haaken, and C. T. Simmons (2009), Estimating flow using tracers and hydraulics in synthetic heterogeneous aquifers, Ground Water, 47(6), 786796.
  • Loosli, H. H. (1983), A dating method with 39Ar, Earth Planet. Sci. Lett., 63(1), 5162.
  • Loosli, H. H., B. E. Lehmann, and W. Balderer (1989), Argon-39, argon-37 and krypton-85 isotopes in Stripa groundwaters, Geochim. Cosmochim. Acta, 53(8), 18251829.
  • Maloszewski, P., and A. Zuber (1982), Determining the turnover time of groundwater systems with the aid of environmental tracers. 1. Models and their applicability, J. Hydrol., 57(3–4), 207231.
  • Maloszewski, P., and A. Zuber (1993), Principles and practice of calibration and validation of mathematical models for the interpretation of environmental tracer data in aquifers, Adv. Water Resour., 16(3), 173190.
  • Maloszewski, P., and A. Zuber (1998), A general lumped parameter model for the interpretation of tracer data and transit time calculation in hydrologic systems—Comments, J. Hydrol., 204(1–4), 297300.
  • Manning, A. H., D. K. Solomon, and A. L. Sheldon (2003), Applications of a total dissolved gas pressure probe in ground water studies, Ground Water, 41(4), 440448.
  • Manning, A. H., D. Kip Solomon, and S. A. Thiros (2005), H-3/He-3 age data in assessing the susceptibility of wells to contamination, Ground Water, 43(3), 353367.
  • Massoudieh, A., S. Sharifi, and D. K. Solomon (2012), Bayesian evaluation of groundwater age distribution using radioactive tracers and anthropogenic chemicals, Water Resour. Res., 48, W09529, doi:10.1029/2012WR011815.
  • Meinardi, C. R. (1994), Groundwater recharge and travel times in the sandy regions of the Netherlands, PhD thesis, 211 pp., VU Univ., Amsterdam.
  • Mendizabal, I., and P. J. Stuyfzand (2011), Quantifying the vulnerability of well fields towards anthropogenic pollution: The Netherlands as an example, J. Hydrol., 398(3–4), 260276.
  • Molénat, J., and C. Gascuel-Odoux (2002), Modelling flow and nitrate transport in groundwater for the prediction of water travel times and of consequences of land use evolution on water quality, Hydrol. Processes, 16(2), 479492.
  • Mook, W. G. (1980), Carbon-14 in hydrogeological studies, in Handbook of Environmental Isotope Geochemistry, vol. 1, edited by P. Fritz and J. C. Fontes, pp. 4974, Elsevier, New York.
  • Neumann, R. B., E. M. LaBolle, and C. F. Harvey (2008), The effects of dual-domain mass transfer on the tritium/helium-3 dating method, Environ. Sci. Technol., 42(13), 48374843.
  • Nolan, B. T., B. C. Ruddy, K. J. Hitt, and D. R. Helsel (1997), Risk of nitrate in groundwaters of the United States—A national perspective, Environ. Sci. Technol., 31(8), 22292236.
  • Oeschger, H., A. Gugelman, H. Loosi, U. Schotterer, U. Siegenthaler, and W. Wiest (1974), 39Ar dating of groundwater, paper presented at IAEA Symposium on Isotope Techniques in Groundwater Hydrology, 11–15 March 1974, pp. 179190, Int. At. Energy Agency, Vienna.
  • Osenbrück, K., S. Fiedler, K. Knöller, S. M. Weise, J. Sültenfuß, H. Oster, and G. Strauch (2006), Timescales and development of groundwater pollution by nitrate in drinking water wells of the Jahna-Aue, Saxonia, Germany, Water Resour. Res., 42, W12416, doi:10.1029/2006WR004977.
  • Plummer, L. N., E. Busenberg, J. K. Böhlke, D. L. Nelms, R. L. Michel, and P. Schlosser (2001), Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains, Virginia, USA: A multi-tracer approach, Chem. Geol., 179(1–4), 93111.
  • Poreda, R. J., T. E. Cerling, and D. K. Salomon (1988), Tritium and helium-isotopes as hydrologic tracers in a shallow unconfined aquifer, J. Hydrol., 103(1–2), 19.
  • Purtschert, R., H. H. Loosli, U. Beyerle, W. Aeschbach-Hertig, D. Imboden, R. Kipfer, and R. Wieler (1999), Dating of young water components by combined application of 3H/3He and 85Kr measurements, paper presented at IAEA Symposium on Isotope Techniques in Water Resources Development and Management, 10–14 May 1999, Int. At. Energy Agency, Vienna, Austria.
  • Rock, G., and H. Kupfersberger (2002), Numerical delineation of transient capture zones, J. Hydrol., 269(3–4), 134149.
  • Roether, W. (1967), Estimating the Tritium Input to Groundwater From Wine Samples: Groundwater and Direct Run-Off Contribution to Central European Surface Waters, pp. 7391, Int. At. Energy Agency, Vienna.
  • Ruijpers, L., B. van der Grift, B. van Breukelen, and J. Griffioen (2004), The evolution of groundwater quality around pumping-station Holten, the Netherlands, simulated by means of the multi-component geochemical transport model PHT3D, TNO Rep. NITG 04-265-A, TNO-NITG, Utrecht, Netherlands.
  • Sanford, W. (2011), Calibration of models using groundwater age, Hydrogeol. J., 19(1), 1316.
  • Schlosser, P., M. Stute, H. Dörr, C. Sonntag, and K. O. Münnich (1988), Tritium/3He dating of shallow groundwater, Earth Planet. Sci. Lett., 89(3–4), 353362.
  • Sebol, L. A., W. D. Robertsona, E. Busenbergb, L. N. Plummerb, M. C. Ryanc, and S. L. Schiff (2007), Evidence of CFC degradation in groundwater under pyrite-oxidizing conditions, J. Hydrol., 347(1–2), 112.
  • Smethie, W. M., Jr., D. K. Solomon, S. L. Schiff, and G. G. Mathieu (1992), Tracing groundwater flow in the Borden aquifer using krypton-85, J. Hydrol., 130(1–4), 279297.
  • Solomon, D. K., A. Hunt, and R. J. Poreda (1996), Source of radiogenic helium 4 in shallow aquifers: Implications for dating young groundwater, Water Resour. Res., 32(6), 18051813.
  • Spalding, R. F., and M. E. Exner (1993), Occurrence of nitrate in groundwater—A review, J. Environ. Qual., 22(3), 392402.
  • Strebel, O., W. H. M. Duynisveld, and J. Böttcher (1989), Nitrate pollution of groundwater in western Europe, Agric. Ecosyst. Environ., 26(3–4), 189214.
  • Stute, M., M. Forster, H. Frischkorn, A. Serejo, J. F. Clark, P. Schlosser, W. S. Broecker, and G. Bonani (1995), Cooling of tropical Brazil (5°C) during the last glacial maximum, Science, 269(5222), 379383.
  • Suckow, A. (2012), Lumped Parameter Modelling of Age Distributions Using Up to Two Parallel Black Boxes, Manual, Version 2.1. CSIRO Land and Water, Australia.
  • Sültenfuß, J., W. Roether, and M. Rhein (2004), The Bremen mass spectrometric facility for the measurement of helium isotopes, neon, and tritium in water, paper presented at IAEA International Symposium on Quality Assurance for Analytical Methods in Isotope Hydrology, Int. At. Energy Agency, Vienna.
  • Sültenfuß, J., R. Purtschert, and J. F. Führböter (2011), Age structure and recharge conditions of a coastal aquifer (northern Germany) investigated with 39Ar, 14C, 3H, He isotopes and Ne, Hydrogeol. J., 19(1), 221236.
  • Tesoriero, A. J., H. Liebscher, and S. E. Cox (2000), Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths, Water Resour. Res., 36(6), 15451559.
  • Tikhonov, A. N., and V. A. Arsenin (1977), Solutions of Ill-Posed Problems, Winston & Sons, Washington.
  • Troldborg, L., K. H. Jensen, P. Engesgaard, J. C. Refsgaard, and K. Hinsby (2008), Using environmental tracers in modeling flow in a complex shallow aquifer system, J. Hydrol. Eng., 13(11), 10371048.
  • Van den Brink, C., W. J. Zaadnoordijk, B. van der Grift, P. C. de Ruiter, and J. Griffioen (2008), Using a groundwater quality negotiation support system to change land-use management near a drinking-water abstraction in the Netherlands, J. Hydrol., 350(3–4), 339356.
  • Van der Velde, Y., P. J. J. F. Torfs, S. E. A. T. M. van der Zee, and R. Uijlenhoet (2012), Quantifying catchment-scale mixing and its effect on time-varying travel time distributions, Water Resour. Res., 48, W06536, doi:10.1029/2011WR011310.
  • Visser, A., et al. (2007), Dating degassed groundwater with 3H/3He, Water Resour. Res., 43, WR10434, doi:10.1029/2006WR005847.
  • Visser, A., et al. (2009a), Trends in pollutant concentrations in relation to time of recharge and reactive transport at the groundwater body scale, J. Hydrol., (3–4), 427439.
  • Visser, A., et al. (2009b), Comparison of methods for the detection and extrapolation of trends in groundwater quality, J. Environ. Monit., 11, 20302043.
  • Visser, A., et al. (2009c), Travel time distributions derived from particle tracking in models with weak sinks, Ground Water, 47(2), 237245.
  • Visser, A., et al. (2009d), Degassing of 3H/3He, CFCs and SF6 by denitrification: Measurements and two-phase transport simulations, J. Contam. Hydrol., 103(3–4), 206218.
  • Vogel, J. C. (1967), Investigation of groundwater flow with radiocarbon, paper presented at IAEA Symposium on Isotopes in Hydrology, 14–18 November 1966, Int. At. Energy Agency, Vienna, Austria.
  • WHO (2006), Protecting Groundwater for Health, IWA Publ., London.
  • Winger, K., J. Feichter, M. B. Kalinowski, H. Sartorius, and C. Schlosser (2005), A new compilation of the atmospheric 85krypton inventories from 1945 to 2000 and its evaluation in a global transport model, J. Environ. Radioactiv., 80(2), 183215.
  • Zhang, Y.-C., C. P. Slomp, H. P. Broers, H. F. Passier, and P. Van Cappellen (2009), Denitrification coupled to pyrite oxidation and changes in groundwater quality in a shallow sandy aquifer, Geochim. Cosmochim. Acta, 73(22), 67166726.
  • Zuber, A., K. Różański, J. Kania, and R. Purtschert (2011), On some methodological problems in the use of environmental tracers to estimate hydrogeologic parameters and to calibrate flow and transport models, Hydrogeol. J., 19(1), 5369.