SEARCH

SEARCH BY CITATION

References

  • Ackerly, D. (2004), Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance, Ecol. Monogr., 74(1), 2544.
  • Aranda, I., L. Gil, and J. A. Pardos (2000), Water relations and gas exchange in Fagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe, Trees, 14, 344352.
  • Baldocchi, D. D., and Y. Ryu (2011), A synthesis of forest evaporation fluxes—from days to years—as measured with eddy covariance, in Forest Hydrology and Biogeochemistry, pp. 101116, Springer, Netherlands.
  • Baldocchi, D. D., and L. Xu (2007), What limits evaporation from Mediterranean oak woodlands—The supply of moisture in the soil, physiological control by plants or the demand by the atmosphere?, Adv. Water Resour., 30 (10), 21132122.
  • Baquedano, F. J., and F. J. Castillo (2006), Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex, Trees, 20, 689700.
  • Black, T. A. (1979), Evapotranspiration from Douglas fir stands exposed to soil water deficits, Water Resour. Res., 15(1), 164170.
  • Bonan, G. B. (2002), Ecological Climatology: Concepts and Applications, Cambridge Univ. Press, Cambridge U. K..
  • Bond, B. J., and K. L. Kavanagh (1999), Stomatal behavior of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential, Tree Physiol., 19, 503510.
  • Brooks, J. R., F. C. Meinzer, J. M. Warren, J.-C. Domec, and R. Coulombe (2006), Hydraulic redistribution in a Douglas-fir forest: Lessons from system manipulations, Plant Cell Environ., 29, 138150.
  • Buckley, T. N., T. L. Turnbull, S. Pfautsch, and M. A. Adams (2011), Nocturnal water loss in mature subalpine Eucalyptus delegatensis tall open forests and adjacent E. pauciflora woodlands, Ecol. Evol., 1(3), 435450.
  • Burgess, S. S. O., M. A. Adams, N. C. Turner, C. R. Beverly, C. K. Ong, A. A. H. Khan, and T. M. Bleby (2001), An improved heat pulse method to measure low and reverse rates of sap flow in woody plants, Tree Physiol., 21, 589598.
  • Čermák, J., E. Cienciala, J. Kučera, and J.-E. Hällgren (1992), Radial velocity profiles of water flow in trunks of Norway spruce and oak and the response of spruce to severing, Tree Physiol., 10, 367380.
  • Chen, X., Y. Rubin, S. Ma, and D. Baldocchi (2008), Observations and stochastic modeling of soil moisture control on evapotranspiration in a Californian oak savanna, Water Resour. Res., 44, W08409, doi:10.1029/2007WR006646.
  • Chirino, E., J. Bellot, and J. R. Sánchez (2011), Daily sap flow rate as an indicator of drought avoidance mechanisms in five Mediterranean perennial species in semi-arid southeastern Spain, Trees, 25, 593606.
  • Choat, B., et al. (2012), Global convergence in the vulnerability of forests to drought, Nature, 491, 752756.
  • Cohen, Y., F. M. Kelliher, and T. A. Black (1985), Determination of sap flow in Douglas-fir trees using the heat pulse technique, Can. J. For. Res., 15, 422428.
  • Constantz, J., and F. Murphy (1990), Monitoring moisture storage in trees using time domain reflectometry, J. Hydrol., 119(1), 3142.
  • Dang, Q.-L., H. A. Margolis, M. R. Coyea, M. Sy, and G. J. Collatz (1997), Regulation of branch-level gas exchange of boreal trees: Roles of shoot water potential and vapor pressure difference, Tree Physiol., 17, 521535.
  • David, T. S., et al. (2007), Water-use strategies in two co-occurring Mediterranean evergreen oaks: Surviving the summer drought, Tree Physiol., 27, 793803.
  • Dragoni, D., K. K. Caylor, and H. P. Schmid (2009), Decoupling structural and environmental determinants of sap velocity, Part II. Observational application, Agric. For. Meteorol., 149, 570581.
  • Eamus, D., T. Hatton, P. Cook, and C. Colvin (2006), Ecohydrology: Vegetation Function, Water and Resource Mangement, Commonw. Sci. Ind. Res. Organ. Publ., Melbourne Australia.
  • Feddes, R., P. Kowalik, and H. Zaradny (1978), Simulation of Field Water Use and Crop Yield, John Wiley, New York.
  • Fisher, J. B., K. P. Tu, and D. D. Baldocchi (2008), Global estimates of the landatmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites, Remote Sensing Environ., 112, 901919.
  • Ford, C. R., M. A. McGuire, R. J. Mitchell, and R. O. Teskey (2004), Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use, Tree Physiol., 24, 241249.
  • Franks, P. J., P. L. Drake, and R. H. Froend (2007), Anisohydric but isohydrodynamic: Seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance, Plant Cell Environ., 30, 1930.
  • GLOBE Task Team, et al. (1999), The Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0, http://www.ngdc.noaa.gov/mgg/topo/globe.html, Natl. Geophys. Data Cent., Boulder, Colo.
  • Granier, A. (1987), Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements, Tree Physiol., 3, 309320.
  • Humphreys, E. R., T. A. Black, G. J. Ethier, G. B. Drewitt, D. L. Spittlehouse, E.-M. Jork, Z. Nesic, and N. J. Livingston (2003), Annual and seasonal variability of sensible and latent heat fluxes above a coastal Douglas-fir forest, British Columbia, Canada, Agric. For. Meteorol., 115, 109125.
  • Jarvis, P. G. (1976), The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Philos. Trans. R. Soc. London B, 273, 593610.
  • Jassal, R. S., T. A. Black, D. L. Spittlehouse, C. Brümmer, and Z. Nesic (2009), Evapotranspiration and water use efficiency in different-aged Pacific Northwest Douglas-fir stands, Agric. For. Meteorol., 149, 11681178.
  • Johnson, S. G. (1979), The land-use history of the Coast Range Preserve, Mendocino County, California, MA thesis, 258 pp., San Francisco State Univ., San Francisco, Calif.
  • Jung, M., et al. (2010), Recent decline in the global land evapotranspiration trend due to limited moisture supply, Nature, 467, 951954.
  • Kumagai, T., and A. Porporato (2012), Strategies of a Bornean tropical rainforest water use as a function of rainfall regime: Isohydric or anisohydric?, Plant Cell Environ., 35, 6171.
  • Lindroth, A., and S. Halldin (1986), Numerical analysis of pine forest evaporation and surface resistance, Agric. For. Meteorol., 38, 5979.
  • Lohammar, T., S. Larsson, S. Linder, and S. O. Falk (1980), FAST: Simulation models of gaseous exchange in Scots Pine, in Structure and Function of Northern Coniferous Forests: An Ecosystem Study, Ecol. Bull., vol. 32, edited by T. Persson, pp. 505523, Stockholm, Oikos Editorial Office.
  • Lorenz, E. N. (1956), Empirical orthogonal functions and statistical weather prediction, Sci. Rep. 1, 49 pp., Stat. Forecasting Proj., Mass. Inst. of Technol., Dep. of Meteorol., Cambridge, Mass.
  • Marshall, J. D., and R. H. Waring (1984), Conifers and broadleaf species: Stomatal sensitivity differs in western Oregon, Can. J. For. Res., 14(6), 905908.
  • Martínez-Vilalta, J., M. Mangirón, R. Ogaya, M. Sauret, L. Serrano, J. Peñuelas, and J. Piñol (2003), Sap flow of three co-occurring Mediterranean woody species under varying atmospheric and soil water conditions, Tree Physiol., 23, 747758.
  • Martínez-Vilalta, J., A. Sala, and J. Piñol (2004), The hydraulic architecture of Pinaceae—A review, Plant Ecol., 171, 313.
  • McDowell, N., et al. (2008), Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?, New Phytol., 178, 719739.
  • Moore, G. W., B. J. Bond, J. Jones, N. Phillips, and F. C. Meinzer (2004), Structural and compositional controls on transpiration in 40-and 450-year-old riparian forests in western Oregon, USA, Tree Physiol., 24(5), 481491.
  • Morrow, P. A., and H. A. Mooney (1974), Drought adaptations in two Californian evergreen sclerophylls, Oecologia, 15, 205222.
  • Mu, Q., F. A. Heinsch, M. Zhao, and S. W. Running (2007), Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sens. Environ., 111(4), 519536.
  • Nadezhdina, N., J. Čermák, and R. Ceulemans (2002), Radial patterns of sap flow in woody stems of dominant and understory species: Scaling errors associated with positioning of sensors, Tree Physiol., 22, 907918.
  • Oleson, K. W., et al. (2010), Technical description of version 4.0 of the Community Land Model (CLM), NCAR Tech. Note NCAR/TN-478+ STR, 257 pp., Natl. Cent. for Atmos. Res., Boulder CO.
  • Oren, R., J. S. Sperry, G. G. Katul, D. E. Pataki, B. E. Ewers, N. Phillips, and K. V. R. Schäfer (1999), Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit, Plant Cell Environ., 22, 15151526.
  • Oshun, J., D. Rempe, P. Link, K. A. Simonin, W. E. Dietrich, T. E. Dawson, and I. Fung (2012), A look deep inside a hillslope reveals a structured heterogeneity of isotopic reservoirs and distinct water use strategies for adjacent trees, Abstract B33A-0498 presented at 2012 Fall Meeting, AGU, San Francisco, Calif.
  • Pataki, D. E., R. Oren, and W. K. Smith (2000), Sap flux of co-occurring species in a western subalpine forest during seasonal soil drought, Ecology, 81(9), 25572566.
  • Patil, A., D. Huard, and C. J. Fonnesbeck (2010), PyMC: Bayesian stochastic modelling in python, J. Stat. Software, 35(4), 181.
  • Raftery, A. E., and S. M. Lewis (1995), The number of iterations, convergence diagnostics, and generic metropolis algorithms, in Practical Markov Chain Monte Carlo, W. R. Gilks et al. Chapman and Hall, London, U. K., 115–130.
  • Rempe, D., J. Oshun, W. Dietrich, R. Salve, and I. Fung (2010), Controls on the weathering front depth on hillslopes underlain by mudstones and sandstones, Abstract EP34A-05 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13–17 Dec.
  • Rodriguez-Iturbe, I., A. Porporato, F. Laio, and L. Ridolfi (2001), Intensive or extensive use of soil moisture: plant strategies to cope with stochastic water availability, Geophys. Res. Lett., 28(23), 44954497.
  • Running, S. W. (1976), Environmental control of leaf water conductance in conifers, Can. J. For. Res., 6, 104112.
  • Salve, R., D. M. Rempe, and W. E. Dietrich (2012), Rain, rock moisture dynamics, and the rapid response of perched groundwater in weathered, fractured argillite underlying a steep hillslope, Water Resour. Res., 48, W11528, doi:10.1029/2012WR012583.
  • Schulze, E. D., J. Čermák, M. Matyssek, M. Penka, R. Zimmermann, F. Vasicek, W. Gries, and J. Kučera (1985), Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees—A comparison of xylem flow, porometer and cuvette measurements, Oecologia, 66(4), 475483.
  • Schwinning, S. (2010), The ecohydrology of roots in rocks, Ecohydrology, 3, 238245.
  • Schwinning, S. (2013), Do we need new rhizosphere models for rock-dominated landscapes?, Plant Soil, 362, 2531.
  • Sivia, D. S., and J. Skilling (2006), Data Analysis: A Bayesian Tutorial, Oxford Univ. Press, Oxford, U. K.
  • Smith, J. H. G., J. Walters, and R. W. Wellwood (1966), Variation in sapwood thickness of Douglas-fir in relation to tree and section characteristics, For. Sci., 1(12), 97103.
  • Tan, C. S., and T. A. Black (1976), Factors affecting the canopy resistance of a Douglas-fir forest, Boundary Layer Meteorol., 10, 475488.
  • Teuling, A. J., et al. (2010), Contrasting response of European forest and grassland energy exchange to heatwaves, Nat. Geosci., 3, 722727.
  • Topp, G. C., J. L. Davis, and A. P. Annan (1980), Electromagnetic determination of soil water content: Measurements in coaxial transmission lines, Water Resour. Res., 16(3), 574582.
  • USDA (2005), CALVEG zones and alliances: Vegetation descriptions, Vallejo CA. [Available at http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fsbdev3_046448.pdf.].
  • Vinukollu, R. K., E. F. Wood, C. R. Ferguson, and J. B. Fisher (2011), Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches, Remote Sens. Environ., 115, 801823.
  • Wang, Z. Q., M. Newton, and J. C. Tappeiner II (1995), Competitive relations between Douglas-fir and Pacific madrone on shallow soils in a Mediterranean climate, For. Sci., 41(4), 744757.
  • Waring, R. H., and J. J. Landsberg (2011), Generalizing plant–water relations to landscapes, J. Plant Ecol., 4(1–2), 101113.
  • Waring, R. H., and S. W. Running (1978), Sapwood water storage: Its contribution to transpiration and effect upon water conductance through the stems of old-growth Douglas-fir, Plant Cell Environ., 1, 131140.
  • Warren, J. M., F. C. Meinzer, J. R. Brooks, J.-C. Domec, and R. Coulombe (2007), Hydraulic redistribution of soil water in two old-growth coniferous forests: Quantifying patterns and controls, New Phytol., 173, 753765.
  • Williams, C., M. Menne, and J. Lawrimore (2012), Modifications to Pairwise Homogeneity Adjustment software to address coding errors and improve run-time efficiency, NCDC Tech. Rep. GHCNM-12-02, 28 pp., Natl. Clim. Data Cent., Asheville NC.
  • Wilson, K. B., et al. (2002), Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites, Water Resour. Res., 38(12), 1294, doi:10.1029/2001WR000989.
  • Woudenberg, S. W., B. L. Conkling, B. M. O'Connell, E. B. LaPoint, J. A. Turner, and K. L. Waddell (2010), The forest inventory and analysis database: Database description and users manual version 4.0 for Phase 2, Gen. Tech. Rep. RMRS-GTR-245, 336 pp., U. S. Dep. of Agric., For. Serv., Rocky Mt. Res. Stn., Fort Collins, Colo.
  • Wullschleger, S. D., P. J. Hanson, and D. E. Todd (2001), Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques, For. Ecol. Manage., 143(1), 205213.
  • Zwieniecki, M. A., and M. Newton (1995), Roots growing in rock fissures: Their morphological adaptation, Plant Soil, 172, 181187.
  • Zwieniecki, M. A., and M. Newton (1996), Seasonal pattern of water depletion from soil–rock profiles in a Mediterranean climate in southwestern Oregon, Can. J. For. Res., 26, 13461352.