SEARCH

SEARCH BY CITATION

References

  • Bechtel SAIC Company, LLC (2004a), Future climate analysis, Tech. Rep. ANL-NBS-HS-000008 Rev 01, Bechtel SAIC Company, LLC, Las Vegas, Nev.
  • Bechtel SAIC Company, LLC (2004b), Simulation of net infiltration for present-day and potential future climates, Tech. Rep. MDL-NBS-HS-000023 REV 00, Bechtel SAIC Company, LLC, Las Vegas, Nev.
  • Bechtel SAIC Company, LLC (2004c), Technical basis document no. 1: Climate and infiltration, Tech. Rep., Bechtel SAIC Company, LLC, Las Vegas, Nev.
  • Benson, L. V., and R. S. Thompson (1987), Lake-level variation in the Lahontan basin for the past 50,000 years, Quat. Res., 28(1), 6985.
  • Berger, A., and M. F. Loutre (1991), Insolation values for the climate of the last 10 million years, Quat. Sci. Rev., 10(4), 297317.
  • Berger, A. L. (1978), Long-term variations of daily insolation and Quaternary climatic changes, J. Atmos. Sci., 35(12), 23622367.
  • Bertrand, C., J.-P. van Ypersele, and A. Berger (2002), Are natural climate forcings able to counteract the projected anthropogenic global warming?, Clim. Change, 55(4), 413427.
  • Bull, W. B. (1991), Geomorphic Responses to Climatic Change, Oxford Univ. Press, Oxford, England.
  • CNWRA (2007), Total-System Performance Assessment (TPA) Version 5.1 module descriptions and user guide, Tech. Rep., Nuclear Regulatory Commission, Washington, D. C., ML080510329.
  • D'Agnese, F. A., G. M. O'Brien, C. C. Faunt, and C. A. San Juan (1999), Simulated effects of climate change on the Death Valley regional ground-water flow system, Nevada and California, Tech. Rep. Water-Resources Investigations Report 98–4041, U.S. Geol. Surv., Denver, Colo.
  • Elkibbi, M., and J. A. Rial (2001), An outsiders review of the astronomical theory for the climate: Is the eccentricity-driven insolation the main driver of the ice ages?, Earth Sci. Rev., 56, 161177.
  • Forester, R. M., et al. (1999), The climatic and hydrologic history of southern Nevada during the late Quaternary, Tech. Rep. Open File Rep. 98–635, U.S. Geol. Surv., Denver, Colo.
  • French, R. H. (1986), Daily, seasonal, and annual precipitation at the Nevada Test Site, Nevada, Tech. Rep. Publ. 45042, Desert Res. Inst., Reno, Nev.
  • Ghil, M., and H. Le Treut (1981), A climate model with cryodynamics and geodynamics, J. Geophys. Res. 86(C6), 5262–5270.
  • Hevesi, J. A., A. L. Flint, and J. D. Istok (1992b), Precipitation estimation in mountainous terrain using multivariate geostatistics. Part II: Isohyetal maps, J. Appl. Meteorol., 31(7), 677688.
  • Hevesi, J. A., J. D. Istok, and A. L. Flint (1992a), Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: Structural analysis, J. Appl. Meteorol., 31(7), 661676.
  • Hostetler, S., and L. V. Benson (1990), Paleoclimatic implications of the high stand of Lake Lahontan derived from models of evaporation and lake level, Clim. Dyn., 4(3), 207217.
  • Hughes, M. K., and L. J. Graumlich (1996), Multimillennial dendroclimatic records from the western United States, in Climatic Variations and Forcing Mechanisms of the Last 2000 Years, NATO AIS Series, vol. 141, edited by P. D. Jones, R. S. Bradley, and J. Jouzel, pp. 109124, Springer, New York.
  • Hughes, M. K., and L. J. Graumlich (2000), Multi-millennial Nevada precipitation reconstruction, Tech. Rep. 2000–049, NOAA/NGDC Paleoclimatology Program, Boulder, Colo.
  • Imbrie, J., A. McIntyre, and A. C. Mix (1989), Oceanic response to orbital forcing in the late Quaternary: Observational and experimental strategies, in Climate and Geo-Sciences, A Challenge for Science and Society in the 21st Century, vol. NATO ASI Series C, edited by A. Berger, S. H. Schneider, and J.-C. Duplessy, pp. 121164, Kluwer Acad., Boston, Mass.
  • Intergovernmental Panel on Climate Change (2001), Climate Change 2001: Synthesis Report, Cambridge Univ. Press, Cambridge, U. K.
  • Kaufman, D. S., S. C. Porter, and A. R. Gillespie (2003), Quaternary alpine glaciation in Alaska, the Pacific Northwest, Sierra Nevada, and Hawaii, in The Quaternary Period in the United States, vol. Developments in Quaternary Science 1, edited by A. R. Gillespie, S. C. Porter, and B. F. Atwater, pp. 77103, Elsevier Sci., Amsterdam, Netherlands.
  • Kessler, M. A., R. S. Anderson, and G. M. Stock (2006), Modeling topographic and climatic control of east-west asymmetry in Sierra Nevada glacier length during the Last Glacial Maximum, J. Geophys. Res., 111, F02002, doi:10.1029/2005JF000365.
  • Laabs, B. J. C., M. A. Plummer, and D. M. Mickelson (2006), Climate during the last glacial maximum in the Wasatch and southern Uinta Mountains inferred from glacier modeling, Geomorphology, 75, 300317.
  • Laabs, B. J. C., K. A. Refsnider, J. S. Munroe, D. M. Mickelson, P. J. Applegate, B. S. Singer, and M. W. Caffee (2009), Latest Pleistocene glacial chronology of the Uinta Mountains: Support for moisture-driven asynchrony of the last deglaciation, Quat. Sci. Rev., 28, 11711187.
  • Lisiecki, L. E., and M. E. Raymo (2005), A plio-pleistocene stack of 57 globally distributed benthic δ18o records, Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071.
  • Lloyd, A. H., and L. J. Graumlich (1997), Holocene dynamics of treeline forests in the Sierra Nevada, Ecology, 78(4), 11991210.
  • Matsubara, Y., and A. D. Howard (2009), A spatially explicit model of runoff, evaporation, and lake extent: Application to modern and late Pleistocene lakes in the Great Basin region, western United States, Water Resour. Res., 45, W06425, doi:10.1029/2007WR005953.
  • Menking, K. M., R. Y. Anderson, N. G. Shafike, K. H. Syed, and B. D. Allen (2004), Wetter or colder during the Last Glacial Maximum? Revisiting the pluvial lake question in southwestern North America, Quat. Res., 62, 280288.
  • Mohanty, S., T. J. McCartin, and D. W. Esh (2002), Total-System Performance Assessment (TPA) Version 4.0 code: Module descriptions and user's guide, Tech. Rep., Cent. for Nucl. Waste Regul. Analyses, San Antonio, TX, ML031680620.
  • National Research Council (1995), Technical Bases for Yucca Mountain Standards, Natl. Acad. Press, Washington, D. C.
  • Paillard, D. (1998), The timing of Pleistocene glaciations from a simple multiple-state climate model, Nature, 391, 378378.
  • Paillard, D. (2001), Glacial cycles: Toward a new paradigm, Rev. Geophys., 39, 325346.
  • Petit, J. R., et al. (1999), Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429436.
  • Plummer, M. A., and F. M. Phillips (2003), A 2-d numerical model of snow/ice energy balance and ice flow for paleoclimatic interpretation of glacial geomorphic features, Quat. Sci. Rev., 22, 13891406.
  • Quade, J., and T. E. Cerling (1990), Stable isotopic evidence for a pedogenic origin of carbonates in Trench 14 near Yucca Mountain, Nevada, Science, 250, 15491552.
  • Refsnider, K. A., B. J. C. Laabs, M. A. Plummer, D. M. Mickelson, B. S. Singer, and M. W. Caffee (2008), Last glacial maximum climate inferences from cosmogenic dating and glacier modeling of the western Uinta ice field, Uinta Mountains, Utah, Quat. Res., 69, 130144.
  • Reheis, M. C. (1999), Highest pluvial-lake shorelines and Pleistocene climate of the western Great Basin, Quat. Res., 52, 196205.
  • Roper, L. D. (2003), Insolation Codes for Windows. [Available at http://roperld.com/science/InsolationCodes.htm.].
  • Shackley, S., P. Young, S. Parkinson, and B. Wynne (1998), Uncertainty, complexity and concepts of good science in climate change modelling: Are GFMS the best tools?, Clim. Change, 38(2), 159205.
  • Shaffer, J. A., R. S. Cerveny, and R. I. Dorn (1996), Radiation windows as indicators of an astronomical influence on the devil's [sic] hole chronology, Geology, 24(11), 10171020.
  • Sharpe, S. (2002), Future climate analysis—10,000 years to 1,000,000 years after present, Tech. Rep. MOD-01-001 REV 00, Desert Res. Inst., Reno, Nev.
  • Sharpe, S. (2003), Future climate analysis—10,000 years to 1,000,000 years after present, Tech. Rep. MOD-01-001 REV 01, Desert Res. Inst., Reno, Nev.
  • Sharpe, S. (2007), Using modern through mid-pleistocene climate proxy data to bound future variations in infiltration at Yucca Mountain, Nevada, in The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by J. S. Stuckless and R. A. Levich, Memoir 199, pp. 155205, Geol. Soc. of Am., Boulder, Colo., doi:10.1130/2007.1199(05).
  • Smith, G. I., and J. L. Bischoff (1997), An 800,000-Year Paleoclimatic Record from Core OL-92, Owens Lake, Southeast California, Special Paper 317, Geol. Soc. of Am., Boulder, Colo.
  • Spaulding, W. G. (1985), Vegetation and climates of the last 45,000 years in the vicinity of the Nevada Test Site, south-central Nevada, Tech. Rep. Prof. Pap. 1329, U.S. Geol. Surv., Washington, D. C.
  • Stothoff, S., and G. Walter (2007), Long-term-average infiltration at Yucca Mountain, Nevada: Million-year estimates, Tech. Rep. CNWRA 07-003, Cent. for Nucl. Waste Regul. Analyses, San Antonio, Tex., ML072760607.
  • Stothoff, S., O. Chadwick, D. Groeneveld, D. Or, R. Fedors, and D. Woolhiser (1999), Assessing changes in deep percolation over a glacial cycle due to linked changes in climate, soils, and vegetation at Yucca Mountain, NV, Eos Trans. AGU, 80(17), S3S4.
  • Stothoff, S. A. (2013a), Uncertainty and variability of infiltration at Yucca Mountain: Part 1. Numerical model development, Water Resour. Res., 49(6), 37873803, doi:10.1002/wrcr.20252.
  • Stothoff, S. A. (2013b), Uncertainty and variability of infiltration at Yucca Mountain: Part 2. Model results and corroboration, Water Resour. Res., 49(6), 38043824, doi:10.1002/wrcr.20262.
  • Stothoff, S. A. (2013c), Supplement 1: Uncertainty and variability of net infiltration at Yucca Mountain, information on site characteristics, Water Resour. Res., 49(6), 33 pp, doi:10.1002/wrcr.20252.
  • Stothoff, S. A., and A. C. Bagtzoglou (1995), Estimation of recharge at Yucca Mountain, Nevada, Eos Trans. AGU, 76(46), F242F243.
  • Stothoff, S. A., A. C. Bagtzoglou, and H. Castellaw (1995a), Estimation of spatial distribution of recharge factors at Yucca Mountain, Nevada, in Proceedings of the Sixth Annual International Conference on High Level Radioactive Waste Management, pp. 6971, Am. Nucl. Soc., La Grange Park, Ill.
  • Stothoff, S. A., A. C. Bagtzoglou, and H. Castellaw (1995b), Estimation of spatial distribution recharge factors at Yucca Mountain, NV, in Kearney Foundation of Soil Science International Conference Proceedings, Vadose Zone Hydrology: Cutting Across Disciplines, edited by D. Silva, Univ. of California, Davis, Calif.
  • Thompson, R. S., K. H. Anderson, and P. J. Bartlein (1999), Quantitative paleoclimatic reconstructions from late Pleistocene plant macrofossils of the Yucca Mountain region, Tech. Rep. Open File Rep. 89–338, U.S. Geol. Surv., Washington, D. C.
  • Walter, G. (2005), Analysis of factors contributing to uncertainty in estimating future climates at Yucca Mountain, Tech. Rep., Cent. for Nucl. Waste Regul. Analyses, San Antonio, Tex.
  • Winograd, I., T. B. Coplen, J. M. Landwehr, A. C. Riggs, K. R. Ludwig, B. J. Szabo, P. T. Kolesar, and K. M. Revesz (1992), Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada, Science, 258(5080), 255260.
  • Woolfenden, W. B. (2003), A 180,000-year pollen record from Owens Lake, CA: Terrestrial vegetation change on orbital scales, Quat. Res., 59, 430444.