SEARCH

SEARCH BY CITATION

References

  • Allen, D. J., L. J. Brewerton, L. M. Coleby, B. R. Gibbs, M. A. Lewis, A. M. MacDonald, S. J. Wagstaff, and A. T. Williams (1997), The physical properties of major aquifers in England and Wales, Br. Geol. Surv. Tech. Rep. WD/97/34, Environ. Agency R&D Publ. 8, Keyworth, Nottingham.
  • Andrews, I. J. (2013), The Carboniferous Bowland Shale gas study: Geology and resource estimation, report, Br. Geol. Surv. for Dep. of Energy and Clim. Change, London.
  • Arthur, J., B. Bohm, and M. Layne (2008), Hydraulic fracturing considerations for natural gas wells of the Marcellus Shale, paper presented at The Ground Water Protection Council Annual Meeting, Cincinnati, Ohio.
  • Bath, A., H. Richards, R. Metcalfe, R. McCarthney, P. Degnan, and A. Littleboy (2006), Geochemical indicators of deep groundwater movements at Sellafield, UK, J. Geochem. Explor., 90, 2444.
  • Bear, J. (1972), Dynamics of the Fluid in Porous Media, Elsevier, N. Y.
  • Bense, V. F., T. Gleeson, S. E. Loveless, O. Bour, and J. Scibek (2013), Fault zone hydrogeology, Earth Sci. Rev., 127, 171192.
  • Boyer, E. W., B. R. Swistock, J. Clark, M. Madden, and D. E. Rizzo (2011), The impact of Marcellus gas drilling on rural drinking water supplies, report, The Cent. for Rural Pa., Harrisburg, Pa. Gen. Assem.
  • Broderick, J., K. Anderson, R. Wood, P. Gilbert, and M. Sharmina (2011), Shale gas: An updated assessment of environmental and climate change impacts, report, The Co-oper. and Univ. of Manchester, Manchester.
  • Cai, Z., D. N. Lerner, R. G. McLaren, and R. D. Wilson (2007), Conceptual analysis of zero-valent iron fracture reactive barriers for remediating a trichloroethylene plume in a chalk aquifer, Water Resour. Res., 43, W03436, doi:10.1029/2006WR004946.
  • Cohen, H. A., T. Parratt, and C. B. Andrews (2013), Potential contaminant pathways from hydraulically fractured shale to aquifers, Ground Water, 51(3), 317319.
  • Cripps, J. C., and R. K. Taylor (1981), The engineering properties of mudrocks, Q. J. Eng. Geol., 14(4), 325346.
  • Dames and Moore (1999), Numerical groundwater flow and contaminant transport modelling of PCE in the chalk aquifer at Sawston, Cambridgeshire, Rep. R0125/22427-011-401/SNN/AJW/gw, Manchester.
  • Daneshy, A. (2010), Hydraulic fracture to inprove production, TheWayAhead, 16(3), 1417.
  • Davies, R. J., S. A. Mathias, J. Moss, S. Hustoft, and L. Newport (2012), Hydraulic fractures: How far can they go?, Mar. Pet. Geol., 37(1), 16.
  • de Pater, C. J., and S. Baisch (2011), Geomechanical study of Bowland Shale seismicity: Synthesis report, report, Cuadrilla Resour. Ltd., Lichfield, U.K.
  • DiGiulio, D. C., R. T. Wilkin, C. Miller, and G. Oberly (2011), DRAFT: Investigation of ground water contamination near Pavillion, Wyoming, report no. EPA 600/R-00/000, U.S. Environ. Prot. Agency, Off. of Res. and Dev. Ada, Oklahoma.
  • Flewelling, S. A., and M. Sharma (2014), Constraints on upward migration of hydraulic fracturing fluid and brine, Ground Water, 52(1), 919.
  • Flewelling, S. A., M. P. Tymchak, and N. Warpinski (2013), Hydraulic fracture height limits and fault interactions in tight oil and gas formations, Geophys. Res. Lett., 40, 36023606, doi:10.1002/grl.50707.
  • Fisher, K., and N. Warpinski (2012), Hydraulic-fracture-height growth: Real data, SPE Prod. Oper., 27(1), 819.
  • Gassiat, C., T. Cleeson, R. Lefebvre, and J. McKenzie (2013), Hydraulic fracturing in faulted sedimentary basin: Numerical simulation of potential contimination of shallow aquifers over long time scales, Water Resour. Res., 49, 83108327, doi:10.1002/2013WR014287.
  • Gelhar, L. W., C. Welty, and K. R. Rehfeldt (1992), A critical-review of data on field-scale dispersion in aquifers, Water Resour. Res., 28(7), 19551974.
  • Harvey, T., and J. Gray (2010), The unconventional hydrocarbon resources of Britain's onshore basins – shale gas, report, Dep. of Energy and Clim, Change, London.
  • Hobbs, P. R. N., J. R. Hallam, A. Forster, D. C. Entwisle, L. D. Jone, A. C. Cripps, K. J. Northmore, S. J. Self, and J. L. Meakin (2002), Engineering geology of British rocks and soils-Mudstones of the Mercia Mudstone Group, Br. Geol. Surv. Res. Rep. RR/01/02, 106 pp., Keyworth, Nottingham.
  • Holliday, D. W. (1986), Devonian and carboniferrous basins, in Geothermal Energy—The Pottential in the United Kingdom, edited by R. A. Downing and D. A. Gray, pp. 84110, Her Majesty's Stn. Off., London.
  • Jones, H. K., et al. (2000), The physical properties of minor aquifers in England and Wales, Br. Geol. Surv. Tech. Rep. WD/00/4, 234 pp., Environ. Agency R&D Publ. 68, Keyworth, Nottingham.
  • King, G. (2012), Hydraulic fracturing 101: What every representative, environmentalist, regulator, reporter, investor, university teacher, neighbor and engineer should know about estimating frac risk and improving frac performance in unconventional gas and oil wells, paper presented at the SPE Hydraulic Fract. Technol. Conf., Soc. of Pet. Eng., The Woodlans, Tex., 6–8 February.
  • Lee, D. S., J. D. Herman, D. Elsworth, H. T. Kim, and H. S. Lee (2011), A critical evaluation of unconventional gas recovery from the Marcellus Shale, northeastern United States, KSCE J. Civil Eng., 15(4), 679687.
  • Littleboy, A. K. (1995), An approach to the hydrogeological characterization of hard fractured rock, European Commision nuclear science and technology, Topic Rep./EUR 15959, European Commission, Luxembourg.
  • Loseth, H., L. Wensaas, B. Arntsen, N. M. Hanken, C. Basire, and K. Graue (2011), 1000 m long gas blow-out pipes, Mar. Pet. Geol., 28(5), 10471060.
  • McKeown, C., R. S. Haszeldine, and G. D. Couples (1999), Mathematical modelling of groundwater flow at Sellafield, UK, Eng. Geol., 52(3–4), 231250.
  • Millington, R. J. (1959), Gas diffusion in porous media, Science, 130(3367), 100102.
  • Montgomery, S., D. Jarvie, K. Bowker, and R. Pollastro (2005), Mississipian Barnett Shale, Fort Worth basin, north-cetral Texas: Gas-shale play with muti-trillion cubic foot potential, AAPG Bull., 89(2), 155175.
  • Myers, T. (2012), Potential contaminant pathways from hydraulically fractured shale to aquifers, Ground Water, 50(6), 872882.
  • Osborn, S. G., A. Vengosh, N. R. Warner, and R. B. Jackson (2011), Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing, Proc. Natl. Acad. Sci. U. S. A., 108(20), 81728176.
  • Rutqvist, J., A. P. Rinaldi, F. Cappa, and G. J. Moridis (2013), Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs, J. Pet. Sci. Eng., 107, 3144, doi:10.1016/j.petrol.2013.04.023.
  • Saiers, J. E., and E. Barth (2012), “Potential contaminant pathways from hydraulically fractured shale aquifers,” by T. Myers, Ground Water, 50(6), 826828.
  • Schulze-Makuch, D., D. A. Carlson, D. S. Cherkauer, and P. Malik (1999), Scale dependency of hydraulic conductivity in heterogeneous media, Ground Water, 37(6), 904919.
  • Schurch, M., and D. Buckley (2002), Integrating geophysical and hydrochemical borehole-log measurements to characterize the Chalk aquifer, Berkshire, United Kingdom, Hydrogeol. J., 10(6), 610627.
  • Schurch, M., W. M. Edmunds, and D. Buckley (2004), Three-dimensional flow and trace metal mobility in shallow Chalk groundwater, Dorset, United Kingdom, J. Hydrol., 292(1–4), 229248.
  • Shapiro, S. A., O. S. Kruger, C. Dinske, and C. Langenbruch (2011), Magnitudes of induced earthquakes and geometric scales of fluid-stimulated rock volumes, Geophysics, 76(6), WC55WC63.
  • Soeder, D. (1988), Porosity and permeability of easter devonian gas shale, SPE Form Eval., 3(1), 116124.
  • Tellam, J. H., and J. W. Lloyd (1981), A review of the hydrogeology of British onshore non-carbonate mudrocks, Q. J. Eng. Geol., 14(4), 347355.
  • The Royal Society and The Royal Academy of Engineering (2012), Shale gas extraction in the UK: A review of hydraulic fracturing, report no. DES2597, London.
  • Therrien, R., and E. A. Sudicky (1996), Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media, J. Contam. Hydrol., 23(1–2), 144.
  • Therrien, R., R. G. McLaren, E. A. Sudicky, and S. M. Panday (2004), HydroSphere: A Three-dimensional Numerical Model Describing Fully-integrated Subsurface and Surface Flow and Solute Transport, University of Waterloo.
  • U.S. Energy Information Administration (2013a), Annual energy outlook 2013, early release, report, U.S. Dep. of Energy, Washington, D. C.
  • U.S. Energy Information Administration (2013b), Technically recoverable shale oil and shale gas resources: An assessment of 137 shale formations in 41 countries outside the United States, report, Dep. of Energy, Washington, D. C.
  • U.S. Environmental Protection Agency (1987), Report to congress: Management of wastes from the exploration, development, and production of crude oil, natural gas, and geothermal energy, report no. EPA/530-SW-88-003, U.S. Environ. Protect. Agency, Washington, D. C.
  • Vidic, R. D., S. L. Brantley, J. M. Vandenbossche, D. Yoxtheimer, and J. D. Abad (2013), Impact of Shale gas development on regional water quality, Science, 340, doi:10.1126/science.1235009.
  • Warner, N. R., R. B. Jackson, T. H. Darrah, S. G. Osborn, A. Down, K. Zhao, A. White, and A. Vengosh (2012), Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania, Proc. Natl. Acad. Sci. U. S. A., 109(30), 11,96111,966, doi:10.1073/pnas.1121181109.
  • Williams, J. H. (2010), Evaluation of well logs for determining the presence of freshwater, saltwater, and gas above the Marcellus Shale in Chemung, Tioga, and Broome Counties, Rep. 2010–5224, U.S. Geol. Surv. Sci. Invest., N. Y.
  • Zoback, M., S. Kitasei, and B. Copithorne (2010), Addressing the environmental risks from shale gas development, report, Worldwatch Inst., Washington, D. C.